R&D and Markets for New Knowledge over Firms’ Life-cycles∗

Kyriakos Frantzeskakis†
University of Wisconsin - Madison
Masako Ueda‡
University of Wisconsin - Madison and CEPR
March 2007

Abstract

This paper develops a model of R&D with firms’ life-cycles. When a young firm creates new knowledge, the firm may hesitate to implement the knowledge because it is hard to predict if the implementation will be successful. Nevertheless, once the firm implements the knowledge successfully (and thereby becomes established), the firm optimally becomes more willing to implement another knowledge of the same type. Studying a dynamic equilibrium of the economy populated by both young and established firms, we derive the implications on the market for knowledge. We find that established firms are more likely to buy knowledge than young firms because established firms can, but not young firms, selectively buy the knowledge that the firms will be able to implement successfully. We also find that as the transaction cost of selling knowledge becomes lower, young firms replace established firms as creators and sellers of knowledge and a lower fraction of young firms grows into established firms, since young firms find specializing in creating knowledge more profitable than implementing it.

∗We are grateful to Andrea Caggese, Bruno Cassiman, Andrea Fosfuri, Uli Hege, Boyan Jovanovic, Pierre Mella-Barral, Anne Miner, Merih Selvir and seminar participants at Wisconsin, Universitat Pompeu Fabra, HEC Lausanne, 2006 RICAFE conference, University of Mannheim, Universitet van Amsterdam, HEC Paris and Kyoto University for helpful comments on this project. Usual disclaimers apply.
†School of Business; E-mail: kfran@bus.wisc.edu
‡School of Business; E-mail: mueda@bus.wisc.edu
R&D and Markets for New Knowledge over Firms’ Life-cycles

March 2007

Abstract

This paper develops a model of R&D with firms’ life-cycles. When a young firm creates new knowledge, the firm may hesitate to implement the knowledge because it is hard to predict if the implementation will be successful. Nevertheless, once the firm implements the knowledge successfully (and thereby becomes established), the firm optimally becomes more willing to implement another knowledge of the same type. Studying a dynamic equilibrium of the economy populated by both young and established firms, we derive the implications on the market for knowledge. We find that established firms are more likely to buy knowledge than young firms because established firms can, but not young firms, selectively buy the knowledge that the firms will be able to implement successfully. We also find that as the transaction cost of selling knowledge becomes lower, young firms replace established firms as creators and sellers of knowledge and a lower fraction of young firms grows into established firms, since young firms find specializing in creating knowledge more profitable than implementing it.
1 Introduction

Knowledge acquisition from external sources has recently become routine activities for many established firms.¹ For instance, Merck spent about $200 MM on third-party collaborations between 1998 and 2000 and, by 2000, one-third of Merck’s products came from external research or licensing collaborations (Pisano, 2002). Grindley and Teece (1997) point to the increasing use of technology licensing by companies such as IBM, Hewlett-Packard, Texas Instruments, and AT&T during the 1990s. Although conclusive evidence does not exist, young firms appear to be playing an important role in supplying knowledge to established firms. For instance, since 1993, Cisco acquired many young companies which had invented new types of network equipment (Eisenhardt and Sull, 2001). Bristol-Myers bought the exclusive manufacturing and marketing right of the cancer drug, Erbitux, from Imclone that was founded in mid 80s. Hall and Ziedonis (2001) report the strong presence of young firms that design semiconductors for manufacturers.

Despite the growing importance of the market for knowledge in which established and young firms actively interact, few papers provide a theoretical framework to understand this market. This paper departs from existing literatures on the market for knowledge by studying the role of firms’ lifecycles in the structure of the market for knowledge. Our model addresses questions such as

- under which condition does a firm specialize in either research or development instead of perform both?
- what firm does become a buyer/seller of knowledge?
- what is the equilibrium price of knowledge?
- when do more young firms grow into established firms?

To address these issues, we develop a model of the innovation process through which a firm creates knowledge (research) and the same or another

¹Arora, Fosfuri and Gambardella (2001) give a comprehensive survey of this issue.
firm implements the knowledge into new goods or services (development). Implementation of knowledge generates profit only if the implementing firm has the right capability. Different types of knowledge require different types of capability and therefore the firm that can implement one type of knowledge may not possess the capability to implement another type of knowledge.

We distinguish young firms from established firms as follows. A young firm does not know which type of knowledge it can implement. Nevertheless, the first time the firm implements the knowledge successfully, the firm learns that it possesses the capability to implement the knowledge of the same type and becomes “established.” Due to this learning, the established firm, differently from young firms, can distinguish the knowledge that it can implement from those that it may not be able to implement. As a result of this superior identification ability, the established firm is more likely to buy knowledge from other firms than the young firm.\(^2\)

To model the market for knowledge and the process of a young firm to become an established firm simultaneously, we study stationary equilibrium of a continuous-time economy populated by a continuum of both young and established firms. For simplicity, our model is free from asymmetric information and strategic interaction between firms.

We find that three types of equilibrium exist depending on the transaction cost of selling knowledge. When the transaction cost is low, young firms sell their knowledge to established firms. When the transaction cost is moderate, established firms trade their knowledge with each other. When the transaction cost is high, the market for knowledge does not exist.

When the transaction cost is low, established firms specialize in implementing knowledge bought from young firms. Established firms can identify which type of knowledge they can implement and, as a result, their

\(^2\)Similarly to our model, Gilbert and Newbery (1982) also contend that incumbents have higher willingness to pay for innovations. Nevertheless, their logic is based on competition; Monopoly profit is higher than duopoly profit and therefore the monopolist’s incentive to maintain its monopoly status should be bigger than the new firm’s incentive to enter the market. Supporting that incumbents (established firms in our paper) have higher willingness to pay for innovations, Carnitive and Kraft (2005) find that incumbents show higher expenditures for technology licenses than potential entrants.
specialization in implementing knowledge is efficient and naturally arises as equilibrium. Some knowledge created by young firms remain with and is implemented by the young firms, as the implementation capacity of established firms is limited. We call this equilibrium exploitation equilibrium because established firms specialize in exploiting knowledge created by young firms and never create knowledge.\(^3\)

In exploitation equilibrium, we find, two factors influence the ratio of knowledge that young firms sell to established firms against knowledge that young firms attempt to implement by themselves. First, when technological innovation is rapid and new knowledge obsoletes quickly, established firms have to come back to the market for knowledge more often and therefore more knowledge is bought and sold instead of implemented by the young firms. Second, interestingly, when young firms’ attempts to implement the knowledge are more likely to fail, young firms are more likely to make such attempts instead of selling their knowledge to established firms. This paradox arises because when such an implementation attempt is likely to fail, only few young firms become established firms. Thus, less established firms exist in the steady state and aggregate demand for knowledge is low. As a result, more young firms are forced to attempt to implement their knowledge instead of selling it to established firms.

When the transaction cost is moderate, not only young firms but also established firms create new knowledge. In this equilibrium, the transaction cost impedes the reallocation of knowledge created by young firms to established firms. Consequently, young firms attempt to implement their knowledge instead of selling it to established firms. Because young firms may not have the right capability for the knowledge they attempt to implement, such attempts often fail and their new knowledge is often wasted. Nevertheless, the market for knowledge still exists between established firms in this equilibrium. The price of knowledge is too low to motivate young firms to sell their knowledge, but still high enough to motivate established

\(^3\)Cassiman and Ueda (2006) argue that an established firm often foregoes the opportunities to implement promising innovations due to their low fit to the firm’s capability and to its limited implementation capacity.
firms to sell their redundant knowledge, i.e. the knowledge that does not match the firms’ implementation capabilities. We call this equilibrium exploration equilibrium because established firms explore new ideas.

In exploration equilibrium, a higher fraction of young firms grows into established firms than in exploitation equilibrium. Specifically, in exploration equilibrium, all young firms implement their projects instead of selling them due to a high transaction cost. And such implementation attempts, though often fail, open up a chance for a young firm to discover its own capability and become established. In exploitation equilibrium, due to a low transaction cost, more young firms sell their projects and less young firms attempt to implement, and, as a result, less young firms grow into established firms.

When the transaction cost is high, the market for knowledge is closed. Every firm both creates and implements knowledge it creates. In this equilibrium, established firms shelve much of their knowledge due to their mismatches with the firms’ implementation capabilities.\(^4\) Differently from established firms, young firms do not know which type of knowledge they can implement and therefore are less selective than established firms in implementing knowledge. This implication of the model is consistent with the finding by Guedj and Scharfstein (2006) on clinical trials. They find that younger firms are more likely to proceed to the second stage of the clinical trial, but they are more likely to fail.

We can interpret the transaction cost of selling knowledge in two ways. First, the transaction cost is lower if intellectual property rights to innovations are more strongly protected, because inventors need to build less means of appropriating the returns to innovations other than patenting their inventions. Second, the transaction cost is lower if sellers can find buyers easily.\(^5\) Given these two interpretations, the transaction cost has probably declined substantially since early 1980s. Since then, the U.S. has become more pro-patent as well as has experienced technological innovations in com-

\(^4\) For example, according to Ramde (2007), Proctor & Gamble patents any meaningful advance but only acts upon those that are aligned with P&G’s long-term strategy. As a result, P&G uses only 7,000 patents out of approximately 36,000.

\(^5\) Hellmann (2006) argues that a patent system also helps sellers of innovations to find their buyers, through a centralized invention depository system.
munication technology including the emergence of internet. Therefore, our model predicts that the market for knowledge should recently have grown or the structure of the market for technology should recently have changed such that young firms have replaced established firms as knowledge creators and sellers. Consistent with this prediction, Hunt and Nakamura (2007) find that R&D intensity of younger firms increased much faster than that of established firms in the last few decades.

Our model provides a new perspective to the debate on innovativeness of incumbents versus entrants. Since Gilbert and Newbery (1983) and Rein-ganum (1983), economists have long debated which incumbents or entrants innovate more. Evidence on this issue is mixed. For example, Lerner (1997) finds that entrants are more innovative than incumbents in the U.S. hard disk drive industry, whereas Blundell, Griffith and van Reenen (1999) and Schroth and Szalay (2006) find the opposite in the panel of British manufacturing industries and in the U.S. pharmaceutical industry, respectively. Our model stresses that the two questions, who innovates (creates knowledge) and who introduces innovations to the market (implements knowledge), should be separated and the answers to both questions depend on the transaction cost of selling knowledge. Specifically, our model implies that as the transaction cost becomes lower, incumbents innovate less relative to entrants, whereas incumbents introduce more innovations relative to entrants.

Our paper is related to several strands of literatures. Jovanovic (1982) is a seminal article that studies the implication of the adaptive learning on the firm’s exit and growth decision over its life-cycle. In his model, a young firm is yet to learn its potential profitability, whereas an established firm has already learned its own profitability through its past performance. As a consequence, the young firm is more likely to learn from and respond to its recent performance than the established firm. Nevertheless, projects

6Related with this debate, some literatures report that young firms appear to be more innovative than established firms (Scherer, 1980). Small firms, who are often young, tend to do more research than implementation (NSF, various years publication). Small firms appear to produce more innovations given the same number of employees (Acs and Audretsch, 1988).
are homogeneous in the Jovanovic model, and therefore it does not address the issue of project selection and identification. Similarly to our paper, Cassiman and Ueda (2006) model the difference between a new firm and an established firm such that a new firm does not distinguish one type of knowledge from another, whereas an established firm does. Nevertheless, differently from this paper, Cassiman and Ueda do not study the process through which a new firm becomes an established firm. Similarly to our paper, Bernardo and Chowdhry (2000) study the project selection problem when a firm learns its capability by experimentation. They assume that a firm may possess either project-specific capability or general-management capability. In equilibrium, an established firm diversifies into a new area to see which type of capability the firm possesses. If the diversification is successful, the firm learns that it possesses the general-management capability. Otherwise, the firm learns that it possesses project-specific capability. Differently from our paper, the focus of Bernardo and Chowdhry is the firms that have once successfully implemented projects. As a result, their model is more appropriate for explaining the learning of established firms rather than that of young firms, which is the focus of our paper. Finally, Mitchell (2000) studies the model in which a firm acquires a project-specific capability through experience. In our model, the firm learns instead of acquires such a capability.

Several theoretical papers on the market for projects exist. For instance, similarly to our model, Holmes and Schmitz (1990) model a multi-stage project and study individuals that possess the same implementation skill but differ in the creation skill. In their model, projects are sold because some individuals are more talented in creating new projects than others, whereas, in our model, projects are sold because creators of projects may not possess the right capability to implement their projects. Holmes and Schmitz, and this paper share the same prediction such that sold projects generate higher profits than non-sold projects. Differently from Holmes and Schmitz, our paper incorporates the firm’s life-cycle effect and predicts that projects are sold from a young firm to an established firm. Similarly to this paper, Gans and Stern (2000) argue that the transaction cost of selling
knowledge plays an important role in determining the commercialization strategy of start-up firms. Nevertheless, differently from our paper, their markets for knowledge are limited between an established firm and start-up firm. Chan, Nickerson and Owan (2007) also study the market for knowledge with a focus on pharmaceutical industries. Differently from our paper, they do not model the seller side of the market.

The organization of this paper is as follows. Section 2 describes the basic model in which a firm cannot sell the knowledge it creates to another firm. We derive implications on the implementation policy and the value of firms and list the related evidence. Section 3 introduces the market for knowledge and derives several implications on the structure and characteristics of the market for knowledge. We also describe the related evidence. For simplicity, Section 2 and Section 3 both assume that a young firm exits if it fails in implementing knowledge. Differently from Section 2 and Section 3, Section 4 extends the model so that a young firm may stay in the economy after it fails in implementing knowledge. Section 5 concludes.

2 The Model

We outline the life-cycle of the risk-neutral firm, which maximizes the expected present value of cash flows at the continuously compounded discount rate r. Firm’s capability is denoted by $s_f \in T_S$, where $T_S = \{1, 2, ..., S\}$. This capability defines which type of knowledge the firm can implement profitably. The capability of the firm does not change over time. Knowledge’s type has the same space as T_S, and the firm can implement knowledge profitably if and only if the firm’s capability and the knowledge’s type are the same. We call the firm “young” if it does not yet know its own capability and “established” if it learned its own capability. We assume that the prior probability that a young firm possesses capability s_f is $1/S$, $\forall s_f \in T_S$.

\footnote{We can generalize the results of our model to the case that a firm may have no capability to implement knowledge. For this generalization, it suffices to include another firm type, say 0, in the firm’s type space.}

In this section, we do not allow a firm to sell its knowledge to another
firm and focus on describing basic differences between young and established firms. This setup corresponds to the case in which the transaction cost of selling knowledge is too high. In the next section, we introduce a possibility for a firm to sell its knowledge to another firm and show that the market for knowledge exists if the transaction cost is sufficiently low.

2.1 Project Arrival, Incubation, and Learning

The firm’s life-cycle develops as follows. The firm emerges as a young firm and may incur per period cost, c_0 to create knowledge. The knowledge creation occurs according to a Poisson process with rate of λ_0. The prior probability that created knowledge has type s_k is $1/S$, $\forall s_k \in T_S$. The firm may also suddenly die according to a Poisson process with death rate, $\mu_y > 0$. This probability is invariant across firm’s different stages. If we denote $C_{g/0}$ be the expected present value of the total creation cost, then $C_{g/0} = c_0 / (r + \lambda_0 + \mu_g)$. Once the young firm creates knowledge, it decides whether to implement or to abandon the knowledge. If the knowledge is implemented, it costs c_1 per period until the implementation outcome is revealed. This revelation timing also follows a Poisson process with rate λ_1. If we denote $C_{g/1}$ as the present value of the expected implementation cost, $C_{g/1} = c_1 / (r + \lambda_1 + \mu_g)$. The outcome of the implementation is either success or failure. If it is successful, the firm starts generating a per-period profit $y > 0$ for an uncertain period if $s_k = s_f$, and otherwise the firm receives no return on its implementation effort.\footnote{A more general setting is to assume that y is a decreasing function of the distance between s_k and s_f. This generalization, however, adds the complex learning problem of a young firm. For instance, after generating a sufficiently high revenue, the young firm tries to implement if and only if the new knowledge type is sufficiently close to that of the previous knowledge. Studying this learning and experimentation process of the young firm is out of this paper’s scope.} We can interpret y as the net profit per unit time a firm enjoys from successfully implemented knowledge as long as it acts as a monopolist. However, after some time, the market becomes competitive driving profits to zero. If a young firm starts generating revenue from knowledge of type s_k, it learns that its capability is equal to s_k and therefore becomes established. For simplicity, in this and
next sections, we assume that the young firm exits if the implementation outcome is failure.\(^9\) In Section 4, we allow the young firm to stay in the economy after it fails in implementing knowledge. Essential results in this and next sections remain the same under this extension.

Similarly to a young firm, an established firm may also die according to a Poisson process with death rate \(\mu_m > 0\). A positive profit stream of the established firm stops with the Poisson death rate \(\lambda_2\). To maintain the model as simple as possible, we assume that \(\mu_m = \mu_g = \mu > 0\). Therefore, if we denote \(Y\) be the expected present value of the revenue stream from the knowledge, then \(Y = y/(r + \lambda_2 + \mu)\). Once the knowledge “dies” in this way, the established firm enters the knowledge creation process similar to the one for a young firm. The established firm first creates new knowledge, and, once created, decides to implement it. If the established firm decides not to implement the knowledge, it create another knowledge. The flow cost and the arrival and death rates are the same as described in the case of a young firm.

We denote the stage of firm’s development by \(\sigma \in \{g/0, g/1, m/0, m/1, m/2\}\), where \(g\) means that a firm is young and \(m\) means that a firm is established. The symbol /0 means that the firm is engaged in creating knowledge, /1 means that the firm is implementing knowledge, and /2 means that the firm is generating revenues, i.e. harvesting. These assumptions are summarized in the following table.

It is convenient to work with discount factors instead of discount rates, and therefore we introduce the following notation:

\[
\rho_j = \frac{\lambda_j}{\lambda_j + r + \mu}, \quad j = 0, 1, 2.
\]

To make the model non-trivial, we make the following assumption.

\(^9\)One rationale for this assumption is financing frictions such as moral hazard. In the presence of such frictions, a firm may find it difficult to raise funds from external sources and therefore has to finance their investment internally. Failing in implementing one project exhausts the internal cash of the firm and, as a result, the young firm needs to exit if it fails in implementing the first project.
Table 1: Summary of Notations

Assumption 1

\[\Phi - \rho_0 \frac{(S-1)C_1}{S} + \rho_0 \rho_1 \rho_2 \frac{\alpha}{S} \Phi \geq 0, \]

where

\[\Phi \equiv \rho_0 \rho_1 \frac{Y}{S} - C_0 - \rho_0 \frac{C_1}{S}, \quad \text{and} \]

\[\alpha \equiv \left[1 - \frac{\rho_0 \rho_1 \rho_2}{S} - \frac{\rho_0 (S-1)}{S} \right]^{-1}. \]

Intuitively, \(\Phi \) is the present value of the expected cash flows from the entire cycle of one piece of knowledge for an established firm. The value \(\Phi \) includes the creation cost, the implementation cost, and the revenues if the knowledge is matched with the firm’s capability, but does not include the implementation cost if the knowledge does not turn out to match the firm’s capability. The left hand side of the equation (1) is the net present value of a young firm at its inception. The first two terms are the expected present value of the first knowledge. Note that we subtract the extra term \(\rho_0 (S-1) C_1/S \) because a young firm does not know its capability and always implements the knowledge. The third term is the option value of becoming an established firm in the future. The variable \(\alpha \) is the multiplier to summarize the value of the knowledge that an established firm will receive eternally. In sum, this assumption ensures that initiating the process to create knowledge has a non-negative net present value for a young firm.

2.2 Implementation Policy and Value of the Firm

We now describe the implementation policy of the firm once knowledge is created. The decision may depend on whether the firm is young or established.
lished. The established firm can tell if it will be able to implement the knowledge successfully. The young firm, on the contrary, does not know its own capability and therefore whether the firm will be able to implement the knowledge successfully is uncertain.

Definition 1 History h is an element of $\{0, 1, 2, ..., S\}$. If $h = 0$, a firm is young. If $h = s$, $s \in \{1, 2, ..., S\}$, a firm is established and $s_f = s$.

Definition 2 A policy is a set-valued correspondence $d: \{2^T_S, h_t\} \rightarrow \{0, 1\}$, where $T_S = \{1, 2, ..., S\}$, 2^T_S is the power set of T_S, that is, the set of all subsets of T_S. The decision $d(\cdot) = 1$ if the firm decides to implement and $d(\cdot) = 0$ otherwise.

For notational simplicity, we will write $d(s)$ instead of $d(\{s\})$ from now on.

We now define the value of the firm for each stage of the firm’s life-cycle. Let $i = \{g, m\}$ be the firm’s “age.” That is, if $i = g$, the firm is young and if $i = m$, the firm is established. Let $j = \{0, 1, 2\}$ be the R&D-related stage of the firm. That is, if $j = 0$, the firm is creating knowledge, if $j = 1$, the firm is attempting to implement knowledge, and if $j = 2$, the firm is generating a positive revenue. Using this notation, let $V_{i/j}(d)$ be the value of the firm that follows policy d when the firm’s age is i and the firm’s R&D-related stage is j. Then we define optimality as follows:

Definition 3 A policy $d^* \in 2^T_S$ is optimal for a firm if and only if $V_{i/j}(d^*) \geq V_{i/j}(d), \forall d \in 2^T_S$.

2.3 The Optimal Implementation Policy

We now characterize the optimal implementation policy of the firm. Recall that an established firm knows its capability s_f. Intuitively, it would only implement knowledge that match its capability, since this guarantees the firm to generate revenues. If the firm’s capability does not match with the knowledge type, the firm will abandon the knowledge in order to avoid incurring the implementation cost C_1. The next proposition formalizes this intuition.
Proposition 1 The optimal policy for an established firm of type s_f, d^* is

$$d^*(s_k, h_\tau) = \begin{cases} 1, & \text{if } s_k = s_f \\ 0, & \text{otherwise} \end{cases}. $$

Proof. See Appendix.

The optimal policy of the established firm is history independent. The firm maximizes its value by following the same decision rule for all the knowledge it encounters during its lifetime.

The young firm, in contrast with the established firm, does not know its capability in advance. Therefore, there is uncertainty about if the implementation will be successful.

Proposition 2 The optimal policy for the young firm is to implement the new knowledge it creates, independent of s_k.

Proof. See Appendix.

The proof of this proposition formalizes the intuition that the policy of implementing immediately brings $V_{m/0}$ to the firm earlier than any other policy.

Proposition 1 and Proposition 2 make a sharp contrast between the established firm and the young firm in terms of their implementation policy. When making the implementation decision, the established firm is more selective than the young firm, which is more liberal about its choice of knowledge to implement. In what follows, for notational simplicity, we drop the dependence of the firm value on the policy d with the understanding that we refer to the optimal policies by all firms.

2.4 The Value of the Firm

We now derive the closed form solutions for the firm value.

Proposition 3 The firm value for each stage is given by the following set of the equations:

$$V_{m/0} = \alpha \Phi, $$

(4)
where α and Φ are given in Assumption 1,

$$
V_{m/2} = Y + \rho_2 V_{m/0},
$$

(5)

$$
V_{m/1} = -C_1 + \rho_1 V_{m/2},
$$

(6)

$$
V_{g/1} = -C_1 + \frac{\rho_1 V_{m/2}}{S},
$$

(7)

and

$$
V_{g/0} = -C_0 + \rho_1 V_{g/1}.
$$

(8)

Proof. See Appendix.

Note that the value of the firm is linear on the revenue Y, the creation cost C_0 and the implementation cost C_1. The value of the firm is decreasing in the number of knowledge types S, because if S increases, then it becomes less likely that the young firm’s capability matches with the knowledge the firm creates. Observe that except V_0, which is nonnegative according to equation (1), all other values are strictly positive. Equation (1) implies $\Phi > 0$ and $\alpha > 0$. Consequently $V_{m/0} > 0$, and it follows that $V_{m/2} > 0$ by equation (5) and by $Y > 0$. To show that, $V_{g/1} > 0$, $i = \{g, m\}$, it suffices to demonstrate that $V_{g/1} > 0$, because $V_{m/1} > V_{g/1}$. Sticking equation (5) for $V_{m/2}$ into equation (7) gives

$$
V_{g/1} = -C_1 + \frac{\rho_1 Y}{S} + \frac{\rho_1 \rho_2}{S} V_{m/0}
$$

(9)

$$
\geq -C_1 + \frac{\rho_1 Y}{S}
$$

$$
> 0.
$$

The last inequality follows equation (2) together with $\Phi > 0$. By using a similar logic, we can prove that $V_{g/0} > 0$.

2.4.1 Value of Established Firm versus Value of Young Firm

We now compare the value of a young firm with that of an established firm for the same stages. For the implementation stage, subtracting equation (7) from equation (6) and recursively using equation (5) and equation (6), we have

$$
V_{m/1} - V_{g/1} = \rho_1 \frac{S - 1}{S} (Y + \rho_2 \alpha \Phi).
$$

(10)
This difference between the value of an established firm and that of a young firm at the implementation stage comes from the selection bias that the established firm only implements the knowledge that matches with the firm’s capability, whereas the young firm implements any types of knowledge. As a result of this selection bias, the implementation by the established firm will always be successful, whereas with probability $(S - 1)/S$, the young firm’s implementation effort fails. If the implementation will fail, the young firm enjoy neither the value of positive revenue stream Y nor the continuation value after the end of the revenue stream $\alpha \Phi$. Therefore, we obtain equation (10).

Similarly for the creation stage, we can compute

$$V_{m/0} - V_{g/0} = \rho_0 \frac{S - 1}{S} (C_1 + \alpha \Phi). \quad (11)$$

The right hand side is the sum of the cost saving and the continuation value that the established firm can potentially realize if the created knowledge does not match with the firm’s capability. In sum, for both implementation and creation stages, the value of the established firm is at least as much as that of a young firm, since the established firm knows its capability and this information helps the firm to avoid incurring the implementation cost of the unmatched knowledge.

How do exogenous variables affect the value of young and established firms? The answer to this question is summarized in the following corollaries.

Corollary 1 The impact of the potential revenue and of its duration on the firm values is as follows. For $j = \{0, 1\}$, $\partial V_{m/j} / \partial y > \partial V_{g/j} / \partial y > 0$ and $\partial V_{m/j} / \partial \lambda_2 < \partial V_{g/j} / \partial \lambda_2 < 0$. For $j = 2$, $\partial V_{m/j} / \partial y = \partial V_{g/j} / \partial y > 0$ and $\partial V_{m/j} / \partial \lambda_2 = \partial V_{g/j} / \partial \lambda_2 < 0$.

Proof. To prove the positive impact of y, note that Φ increases in y. To prove the negative impact of λ_2, note that differentiating $\alpha \Phi$ by λ_2 gives

$$\frac{\partial \alpha \Phi}{\partial \lambda_2} = \frac{\alpha \rho_0 r \rho_1}{S (r + \lambda_2)^2} \left(\alpha \Phi - \frac{Y}{r} \right) < 0.$$
Together with these two facts, partial differentiation of equations (5), (6), (7), (4), (8), (10), and (11) gives the results.

This corollary states that the value of the firm is increasing in the knowledge revenue y and the duration of this revenue $1/\lambda_2$. More importantly, it also states that the sensitivity of the firm value to y and λ_2 is higher for an established firm than for a young firm. This asymmetric sensitivity is due to the following reason. The established firm will stay in the market unless it involuntarily dies, whereas the young firm may exit the market if its knowledge turns out not to match its own capability. Change in y and λ_2 affects the firm value only for the state in which the firm stays in the market. A young firm is affected less because it has a higher probability to exit from the market than an established firm.

Corollary 2 The impact of the creation cost and its duration is as follows:
\[\frac{\partial V_{m/0}}{\partial c_0} < \frac{\partial V_{y/0}}{\partial c_0} < 0 \quad \text{and} \quad \frac{\partial V_{m/0}}{\partial \lambda_0} < \frac{\partial V_{y/0}}{\partial \lambda_0} < 0. \]

For $j = 3$,
\[\frac{\partial V_{m/0}}{\partial c_0} = \frac{\partial V_{g/0}}{\partial c_0} < 0 \quad \text{and} \quad \frac{\partial V_{m/0}}{\partial \lambda_0} = \frac{\partial V_{y/0}}{\partial \lambda_0} < 0. \]

Proof. To prove the negative impact of c_0, note that Φ decreases in c_0. To prove the positive impact of λ_0, note that both α and Φ increase in λ_0. Partial differentiation of the equations (5), (6), (7), (4), (8), (10), and (11) gives the results.

This corollary states that the value of the firm decreases in the cost and duration of creating knowledge. (Note that λ_0 is negatively related with the duration of creation.) And the sensitivity of the firm value to such costs and durations is higher for an established firm than a young firm. The reason for this asymmetric sensitivity is the same as the one for Corollary 1.

Comparative statics with respect to the implementation cost is not as straightforward as the creation cost, and therefore we divide the results in the two corollaries that follow. The next corollary is about comparative statics on the value of established and young firms at their implementation and commercialization stages.
Corollary 3 The impact of the implementation cost and duration is as follows: \(\partial V_{m/1}/\partial c_1 < \partial V_{g/1}/\partial c_1 < 0, \partial V_{m/2}/\partial c_1 = \partial V_{g/1}/\partial c_1 < 0, \partial V_{m/1}/\partial \lambda_1 > \partial V_{g/1}/\partial \lambda_1 > 0, \) and \(\partial V_{m/2}/\partial \lambda_1 = \partial V_{g/2}/\partial \lambda_1 > 0. \)

Proof. To prove the negative impact of \(c_1 \), note that \(\Phi \) decreases in \(c_1 \). To prove the positive impact of \(\lambda_1 \), note that \(\alpha, \rho_1, \) and \(\Phi \) are all increasing in \(\lambda_1 \). Together with these facts, partial differentiation of the equations (5), (6), (7), and (10) combined with the equation (3) gives the results.

The value of the firm at the implementation and the harvesting stages respond to changes in the implementation cost similarly to changes in the creation cost. This is because once implementation starts, both young and established firms are at an equal footing.

The next corollary is about comparative statics on the value of established and young firms at their creation stage.

Corollary 4 The impact of the cost and the duration of implementation on the value of firms at the creation stage is as follows: For \(i = \{g, m\} \),

1. \(\partial V_i/0/\partial c_1 < 0 \) and \(\partial V_i/0/\partial \lambda_1 > 0. \)

2. \(\partial V_{g/0}/\partial c_1 < \partial V_{m/0}/\partial c_1 < 0 \)
 if and only if
 \[S - \rho_0\alpha r_2 - \rho_0 (S - 1) - \rho_0 (r + \lambda_2) \leq 0; \] (12)

3. \(\partial V_{g/0}/\partial \lambda_1 > \partial V_{m/0}/\partial \lambda_1 > 0 \)
 if and only if
 \[\frac{\alpha\rho_0}{S} (\alpha r_2 \Phi + Y) - \frac{c_1}{r} \leq 0. \] (13)
Proof. The first part of the corollary can be obtained by differentiating the
equations (4), and (8). To prove the second part of the corollary, note that
differentiating $C_1 + \alpha \Phi$ by c_1 gives
$$\frac{\partial (C_1 + \alpha \Phi)}{\partial c_1} = \frac{S - \rho_0 \rho_1 \rho_2 - \rho_0 (S - 1) - \rho_0 (r + \lambda_2)}{(r + \lambda_1) (S - \rho_0 \rho_1 \rho_2 - \rho_0 (S - 1))}.$$

To prove the third part of the corollary, note that differentiating $C_1 + \alpha \Phi$
by λ_1 gives
$$\frac{\partial (C_1 + \alpha \Phi)}{\partial \lambda_1} = \left(\frac{\alpha \rho_0}{S} (\alpha \rho_2 \Phi + Y) - \frac{c_1}{r}\right) \frac{r}{(r + \lambda_1)^2}.$$

Together with equations (10) and (11), the second and the third parts of
the corollary follow.

A change in the implementation cost c_1 and the duration of implement-
ation stage $1/\lambda_1$ may or may not impact an established firm more than
a young firm. More costly implementation (high c_1 or low λ_1) impacts the
value of the firm in the creation stage in two ways. First, it increases the cost
of implementing the knowledge currently being created, in the future. This
negative effect is more severe for a young firm than an established firm, be-
cause the established firm may not implement the knowledge currently being
created if it will turn out not to match with the firm’s capability. Second,
more costly implementation increases the cost of implementing knowledge
that will be created later. This negative effect is more severe for an estab-
lished firm because an established firm will stay in the market later, whereas
a young firm may not. These two effects impact on the difference between
the values of an established firm and a young firm in the opposite way. As
a consequence, we do not have a clear result.

2.4.2 Value of Progress for Established Firms and Young Firms

We are now going to characterize how the firm value develops across the
different firm stages.

Corollary 5 $V_{m/1} - V_{m/0} > V_{g/1} - V_{g/0}$. The difference in the firm value
between the implementation stage and the creation stage is larger for an
established firm than a young firm.
Proof. Subtracting equation (10) from equation (11) gives

$$(V_{m/1} - V_{m/0}) - (V_{g/1} - V_{g/0}) = \frac{S - 1}{S} \left[\rho_1 (Y + \rho_2 \alpha \Phi) - \rho_0 (C_1 + \alpha \Phi) \right].$$

Noting that $\alpha \Phi = V_{m/0}$, $Y + \rho_2 \alpha \Phi = V_{m/2}$ and rearranging equation (6) give $\rho_1 V_{m/2} = V_{m/1} + C_1$, we get

$$(V_{m/1} - V_{m/0}) - (V_{g/1} - V_{g/0}) = \frac{S - 1}{S} \left[V_{m/1} + (1 - \rho_0) C_1 - \rho_0 V_{m/0} \right].$$

The right hand side is strictly positive since $1 - \rho_0 > 0$, $\rho_0 < 1$ and $V_{m/1} > V_{m/0}$, and the result follows.

Intuitively, if an established firm is implementing knowledge, that implies that the knowledge type is matched with the firm’s capability, and the implementation profit is guaranteed. Nevertheless, if a young firm is implementing knowledge, it may not be matched with the firm’s capability and therefore it may fail to generate revenues. Therefore, the progress from the creation stage to the implementation stage conveys a stronger signal for an established firm than a young firm.

Corollary 6. $V_{m/2} - V_{m/1} < V_{g/2} - V_{g/1}$. The difference in the firm value between the harvesting stage and the implementation stage is larger for a young firm than an established firm.

Proof. It immediately follows that $V_{m/2} = V_{g/2}$ and $V_{m/1} > V_{g/1}$. ■

The young firm gains more from implementing knowledge successfully than an established firm does, because when a young firm progresses to the harvesting stage, this incident coincides with the firm’s learning of its own capability. This result is based on the same logic in Alti (2003). He argues that the information content of cash flow is bigger and so is the investment sensitivity to cash flow for a young firm than an established firm.

2.5 Related Evidence

Proposition 1 and Proposition 2 together imply that an established firm may not implement the knowledge it created, whereas the young firm does
implement the knowledge it created. Cockburn and Henderson (2001) examine the performance of drug implementation for clinical research project of 10 multinational pharmaceutical firms. They find that among 585 projects with their outcomes known 269 projects were abandoned even before any regulatory filings were commenced (Table 2). More interestingly, Guedj and Scharfstein (2004) find the evidence consistent with our results. They compare the clinical trial strategies and performance of large, established biopharmaceutical firms to those of early stage firms that have not yet successfully developed a drug. They find that early stage firms are more likely than established firms to advance drug candidates from Phase I to Phase II clinical trials. However, early stage firms have much less promising clinical results in their Phase II trials and their Phase II drug candidates are also less likely to advance to Phase III and to receive Food and Drug Administration approval.10 Kaplan, Sensoys, and Stromberg (2005) find that venture capital funded firms rarely change their business plans. Given that venture capital funded firms are mostly young, the time-invariability of their business plans is consistent with our prediction that young firms implement the knowledge they created instead of creating different knowledge and switching their business focuses.

Corollary 6 suggests that the value of young firms is more sensitive to cash flow announcements than that of established firms. Supporting this argument, Zhang (2006) finds that stock return of younger firms are more sensitive to revisions of analysts’ earning forecasts (Table III).

If we interpret the creation stage as research and the implementation stage as development, our model predicts that an established firm spends relatively more on research and less on development than a young firm does. This is not supported by aggregated data. For instance NSF (2002) reports that the ratio of development to research is 3.1 for firms with not less than 5,000 of employment and this ratio drops to 2.5 for firms with less than

10Empirical findings on the phase one clinical trial differ from those on the phase two clinical trial. Danzon, Nicholson and Perreira (2005), using the data on 900 pharmaceutical firms, find that experience do not change the probability that the firm completes the phase 1 clinical trial.
5,000 of employment.

Our model in the next section incorporates the market for knowledge. Differently from the result of this section, we find that an established firm spends relatively less on research and more on development.

3 The Market for Knowledge

So far we have prohibited a firm from selling its knowledge to another firm. In this section, we introduce such an opportunity and study the market for knowledge. We make a few assumptions concerning the market for knowledge. First, we assume that the seller of the knowledge incurs $\psi > 0$ of deadweight cost at the moment of each sales. Second, without loss of generality, we assume that a firm has to make the decision to sell its knowledge at the moment it has created the knowledge. Once it starts to implement the knowledge, the firm can no longer sell the knowledge to another firm. Third, without loss of generality, we assume that an established firm has to make the decision to buy new knowledge at the moment the firm’s harvesting period has ended.

3.1 Stationary Equilibrium

We focus on non-trivial stationary equilibrium such that the masses of established and young firms are both positive and stay constant over time. Specifically, let $G_0(t)$ be the mass of young firms creating new knowledge at time t, $G_1(t, s)$ be the mass of young firms implementing the knowledge s at time t, and $M_i(t, s), i \in \{0, 1, 2\}$ be the mass of established firms with capability s in stage i at time t. Let $N(t)$ be the mass of new firms entering in the market at time t. Let $p(t, s)$ be the price of knowledge with type s at time t.

We focus on symmetric stationary equilibrium such that the distribution of firm types and the price of each knowledge stays the same over time. Therefore, we drop t from notation. More formally, we define a stationary equilibrium as follows:
Definition 4 A stationary equilibrium with the market for knowledge is a collection of firm masses in the economy \(N, G_0, G_1, M_0(s), M_1(s), M_2(s) \), knowledge transfer price \(p(s) \) and a collection of firm’s implementation policies such that

- the mass of firms at any given life stage and the price of each knowledge are time invariant, and
- given the knowledge price, all firms follow the optimal implementation policies.

To characterize the stationary equilibria, it is useful to introduce the following notation. Let

\[
G_1 = \sum_{s=1}^{S} G_1(s) \\
M_1 = \sum_{s=1}^{S} M_1(s)
\]

By the law of large numbers, \(G_1(s) = \frac{1}{S} G_1 \), and \(M_1(s) = \frac{1}{S} M_1 \), for all \(s \).

By symmetry, \(p(s) = p \) for all \(s \).

Using the notation just introduced, the law of motion in stationary equilibrium is characterized by the following system of equations.

\[
\begin{align*}
\mu G_0 + \lambda_0 (1 - H_g) G_0 &= N, \\
(\mu + \lambda_1) G_1 &= \lambda_0 G_0 (1 - H_g), \\
(\mu + \lambda_1) M_1 &= \lambda_0 \left(\frac{S - 1}{S} M_0 H_m^0 + \frac{1}{S} M_0 \right) + \lambda_2 H_m^2, \\
(\mu + \lambda_2) M_2 &= \frac{\lambda_1 G_1}{S} + \lambda_1 M_1,
\end{align*}
\]

and

\[
\left(\mu + \frac{\lambda_0}{S} + \frac{\lambda_0 (S - 1)}{S} H_m^0 \right) M_0 = \lambda_2 M_2 (1 - H_m^2) + \frac{\lambda_0 (S - 1)}{S} (1 - H_m^0) M_0,
\]

(18)
where H_g is the proportion of knowledge created by young firms and sold to established firms, H^2_m is the ratio of established firms that face the end of the harvesting period and buy knowledge right away, and H^0_m is the ratio of established firms that have just created unmatched knowledge and buy knowledge from another firm. Equation (14) ensures the outflow and the inflow of incubating new firms are the same. Note that among the young firms that have just created knowledge, the fraction of H_g is sold to established firms and the rest will implement their knowledge by their own. Then, equation (15) ensures that the outflow and the inflow of implementing young firms are the same. Note that the right hand side of equation (16) is the inflow of implementing established firms. It consists of the mass of knowledge sold from young firms, the mass of knowledge created and implemented by the same established firms and the mass of knowledge sold from established firms to other established firms. Then, equation (16) ensures that the outflow and the inflow of implementing established firms are the same. Equation (17) ensures that the outflow and the inflow of harvesting firms are the same. The left hand side of equation (18) is the outflow of incubating established firms and it consists of those who have just died, those who have just created knowledge and are going to implement them by their own, and those who have just created knowledge and sold their knowledge to other established firms. The right hand side of equation (18) is the inflow of established firms that attempt to create knowledge and it is equal to the mass of established firms that finished harvesting minus those who have just bought knowledge from either young or other established firm. Finally, we also need the knowledge market clearing condition as follows:

$$\frac{n_0 (S - 1)}{S} M_0 H^0_m + \lambda_2 M_2 H^2_m = \lambda_0 H_g G_0 + \frac{n_0 (S - 1)}{S} M_0.$$

Note that the left hand side is established firms' demand for knowledge and the right hand side is supply of knowledge from young and established firms.

3.2 Life-cycle of Firms

We are now going to describe additional decisions that each firm makes due to the presence of the market for knowledge and also the value functions for
each stage of firm’s life-cycle.

In a presence of the market for knowledge, a young firm starts its life with a decision between purchasing knowledge and creating new knowledge of its own. If the young firm decides to purchase knowledge, the young firm’s value is equal to $V_{g/1} - p$, and $V_{g/0}$, otherwise. Its value is $V_{g/0}$ while the young firm is engaged in creating new knowledge. Once the young firm creates knowledge, it chooses either implementing the knowledge by itself or selling it to another firm. If the young firm decides to sell its knowledge, the firm gets $\max\{V_{g/0}, V_{g/1} - p\} + p - \psi$. If it decides to implement the knowledge, then its value becomes $V_{g/1}$. Thus,

$$V_{g/0} = \rho_0 \max\{\max\{V_{g/0}, V_{g/1} - p\} + p - \psi, V_{g/1}\} - C_0. \quad (19)$$

If the young firm attempts to implement the knowledge, it matches with the firm’s capability with probability $1/S$. In this case, the firm moves to the harvesting stage and gets V_2. With probability $(S - 1)/S$, the knowledge does not match with the firm’s capability. In this case, at the end of the implementation stage, the firm exits and gets zero. Therefore,

$$V_{g/1} = \frac{\rho_1 V_2}{S} - C_1 \quad (20)$$

Now, we turn to an established firm. Once the harvesting period ends, the established firm chooses either creating new knowledge and getting $V_{m/0}$ or purchasing the knowledge that fits its own capability by paying p. If the latter is chosen, the firm proceeds to implement the purchased knowledge and its value becomes $V_{m/1}$. Thus,

$$V_2 = Y + \rho_2 \max\{V_{m/0}, V_{m/1} - p\}. \quad (21)$$

If the established firm creates knowledge that fits the firm’s capability, the firm proceeds to implement the knowledge and the firm’s value becomes $V_{m/1}$. Otherwise, the firm sells the knowledge it created and chooses between creating new knowledge or purchasing knowledge created by another firm. Therefore,

$$V_{m/0} = \frac{1}{S} \rho_0 V_{m/1} + \frac{S - 1}{S} \rho_0 \left(\max\{V_{m/0}, V_{m/1} - p\} + p - \psi\right) - C_0. \quad (22)$$
Once the established firm starts implementing the knowledge that matches with the firm’s capability, the firm just waits for the harvesting period while incurring the implementation cost. Thus,

\[V_{m/1} = \rho_1 V_2 - C_1. \] \hfill (23)

It is worthwhile to mention that the life-cycle described above is a reduced form in the following sense. An established firm has an option to sell its knowledge irrespective of the project type. But we ignore the possibility that the firm may sell the knowledge that matches with the firm’s capability. This is because in equilibrium the firm that benefits most from possessing a certain type of knowledge is the one with the matching capability. Besides, selling a project costs \(\psi \). Therefore, the equilibrium price of the project should not be so high that even the firm with the matching capability is willing to sell it to another firm.

3.3 Non-Existence of Equilibrium in Which Young Firms Buy Knowledge

We are now going to show that a young firm buys no knowledge in equilibrium. First, we will show that a young firm should not buy knowledge from another young firm and, second, we will show that a young firm should not buy knowledge from an established firm, either.

If a young firm were to buy knowledge from another young firm in equilibrium, the buying young firm were willing to pay \(p \) to another young firm instead of creating new knowledge, as well as the selling young firm were willing to create knowledge and then sell it later. The first condition is summarized to

\[V_{g/1} - p \geq V_{g/0}. \] \hfill (24)

That is, a young firm prefers buying created knowledge instead of creating its own. The second condition is summarized to the following two conditions:

\[V_{g/1} - p \leq V_{g/0} \] \hfill (25)

and

\[\max \{ V_{g/0}, V_{g/1} - p \} + p - \psi \geq V_{g/1}. \] \hfill (26)
The following proposition states that the three conditions above are not compatible.

Proposition 4 There does not exist equilibrium in which a young firm buys knowledge from another young firm.

Proof. Combining equations (24) and (25) gives $V_{g/1} - p = V_{g/0}$. As a result, $\max \{ V_{g/0}, V_{g/1} - p \} = V_{g/0}$. Nevertheless, this equation together with equation (26) implies $-\psi \geq 0$, which is contradiction. Q.E.D.

Intuition behind this proposition is straightforward. If a young firm buys knowledge from another young firm, such a trade does not change the probability that the knowledge will be successfully implemented. Nevertheless, such a trade wastes transaction cost ψ. Therefore, it is inefficient and a gain from trade does not exist.

For a young firm’s purchase of knowledge from an established firm to occur, two conditions are needed. First, a young firm prefers buying new knowledge to creating its own. That is, equation (24) needs to hold. Second, an established firm prefers creating new knowledge to purchasing knowledge which matches the firm’s capability. Thus,

$$V_{m/0} \geq V_{m/1} - p. \quad (27)$$

The next proposition states that these two conditions are not compatible.

Proposition 5 There does not exist equilibrium in which a young firm buys knowledge from an established firm.

Proof. See Appendix.

Intuition behind this proposition is as follows. The benefits of buying knowledge instead of creating new knowledge are saving the creation cost and moving to the implementation stage without delays. These benefits exist no matter whether it is a young or an established firm that is purchasing knowledge. In addition, if an established firm chooses to buy new knowledge instead of creating one, the firm can selectively acquire the new knowledge
that matches its own capability and simultaneously avoid the risk of creating knowledge that does not match the firm’s capability. As a consequence of this additional gain, buying knowledge always brings a bigger benefit to established firms than young firms. Thus, if a young firm would be buying knowledge, so should be an established firm and no established firm should create knowledge of its own. As a consequence, a young firm should not buy knowledge from an established firm in equilibrium.

3.4 Exploration versus Exploitation

Given that only established firms buy knowledge in equilibrium, it is useful to distinguish two regimes. In the first regime, established firms purchase knowledge from young firms. Unsold knowledge is implemented by young firms. We call this regime exploitation because the established firms focus on exploiting such opportunities and are not engaged in creating knowledge. In the second regime, established firms create knowledge. We call this regime exploration because the established firms also explore opportunities to create new knowledge.

3.5 Characteristics of Stationary Equilibrium

To study the features of stationary equilibrium, we start with pointing out a necessary condition for an equilibrium to have a positive mass of established firms. Note that if no young firm would implement new knowledge, the mass of established firms would inevitably decline over time because of a positive death rate \(\mu \). Therefore, in a stationary equilibrium with a positive mass of established firms,

\[
p - \psi + V_{g/0} \leq V_{g/1}. \tag{28}
\]

That is, a young firm at least weakly prefers implementing new knowledge to selling it.
3.5.1 Exploitation Equilibrium (Established Firms Specialize in Implementation)

We begin with examining if there exists an equilibrium in which established firms specialize in implementing knowledge and create no knowledge. In such an equilibrium,

\[V_{m/1} - p \geq V_{m/0}, \]

and \(M_0 = 0 \). We also need young firms to be willing to sell their knowledge and therefore

\[V_{g/0} + p - \psi \geq V_{g/1}. \]

Together with equation (28),

\[V_{g/0} + p - \psi = V_{g/1}. \]

That is, a young firm needs to be indifferent between selling and implementing its new knowledge. We call equilibrium in which both equation (29) and (30) are satisfied exploitation equilibrium. The following proposition ensures the existence of exploitation equilibrium.

Proposition 6 If

\[
\psi \leq \frac{(S - 1)(1 - \rho_0) \rho_1 (Y - \rho_2 C_0 - \rho_0 \rho_2 C_1)}{S (1 - \rho_0) + \rho_0 (1 - \rho_1 \rho_2) - \frac{S - 1}{S}(1 - \rho_0) \rho_0 \rho_1 \rho_2}
\]

then there exists exploitation equilibrium such that \(M_1, M_2 > 0 \). In this equilibrium, the knowledge price is given by

\[
p = \frac{\rho_1 (1 - \rho_0) Y + S (1 - \rho_1 \rho_2) (\psi + C_0) - (1 - \rho_0) [S (1 - \rho_1 \rho_2) + \rho_1 \rho_2] C_1}{S (1 - \rho_1 \rho_2) + \rho_1 \rho_2 (1 - \rho_0)}
\]

Proof. See Appendix.

For exploitation equilibrium to exist, the transfer cost \(\psi \) needs to be sufficiently low, so that a young firm does not require too high a price to sell its knowledge to an established firm. Not surprisingly, the knowledge price is increasing in the cost of creating knowledge. The knowledge price is
decreasing in the implementation cost, as a young firm is willing to sell its knowledge at a lower price if not selling and implementing the knowledge results in a higher loss. The knowledge price is increasing in the revenues, as a young firm is less willing to sell its knowledge if not selling can potentially bring in higher revenues and therefore the price needs to increase in order to induce the young firm to sell its knowledge to an established firm. The knowledge price is decreasing in \(S \) because an increase in \(S \) makes it more likely that the young firm’s attempt to implement knowledge may fail.\(^{11}\) As a result, a young firm is more willing to sell its knowledge at a lower price when \(S \) is bigger.

Given the death rate \(\mu \), the entry mass \(N \), and the rates to move to the next stage, \(\lambda_0 \), \(\lambda_1 \) and \(\lambda_2 \), one can solve for the complete distribution \(G_0 \), \(G_1 \), \(M_2 \) and \(M_1 \). In what follows, we characterize the stationary equilibrium.

Proposition 7 In the exploitation equilibrium, the rate of knowledge transfers defined by \(\lambda_2 M_2/\lambda_0 G_0 \) is decreasing in \(\mu \) and \(S \) and increasing in \(\lambda_1 \) and \(\lambda_2 \).

Proof. See Appendix.

Intuition behind this proposition is as follows. When \(\mu \) and \(S \) are high, less firms become established and, as a result, established firms’ demand for knowledge is low and less knowledge transfers occur. The positive relation between \(S \) and the transfer rate is paradoxical. If \(S \) is high, implementation attempts by young firms are more likely to fail. Nevertheless, the rate of such an attempt is higher when \(S \) is high. This paradoxical arises from the negative relation between \(S \) and demand for new knowledge. High \(S \) makes it difficult for young firms to become established and therefore suppresses demands for new knowledge. Without lots of buyers, more young firms are

\[^{11}\text{Differentiating } p \text{ with respect to } S \text{ gives}
\[
\frac{dp}{dS} = \frac{\rho_2 (1 - \rho_1 \rho_2)(\rho_2 \psi - Y)}{(S (1 - \rho_1 \rho_2) + \rho_1 \rho_2)^2}.
\]

This is negative because \(Y > \rho_2 \psi \) by the existence condition for the exploitation equilibrium described in Proposition 6.
forced to implement their knowledge despite their attempts are likely to fail. When \(\lambda_1\) and \(\lambda_2\) are high, established firms come back to the knowledge market quickly and, as a result, demand for knowledge increase. As a consequence, the knowledge transfer rate increases.

Proposition 8 In exploitation equilibrium, the values of established firms \(V_2\) and \(V_{m/1}\) are both increasing in \(S\). The values of young firms \(V_{g/0}\) and \(V_{g/1}\) are both decreasing in \(S\).

Proof. See Appendix.

Intuition behind this proposition is similar to how a higher barrier to entry asymmetrically influences incumbents and new entrants. When \(S\) is high, it is unlikely that a young firm can successfully implement the knowledge it creates. Implementing by itself is an outside option of the young firm when it negotiates the price of selling the knowledge to an established firm. If this outside option is not attractive, the bargaining power of the young firm falls and so does the price of the knowledge. Opposite to young firms, an established firm can buy knowledge at a cheaper price if \(S\) is high, and therefore the value of the established firm rises.

3.5.2 Exploration Equilibrium (An established firm buys knowledge from another established firm.)

We are now going to examine if there exists stationary equilibrium in which some established firms create knowledge and trade their knowledge among established firms. Note that there always exists stationary equilibrium in which established firms create and they do not sell their knowledge at all, if the transfer cost \(\psi\) is sufficiently high. We have analyzed this case in Section 2.

We begin our analysis by describing the necessary conditions for a stationary equilibrium in which some established firms create knowledge. The first condition is that an established firm needs to be willing to create knowledge instead of buying, that is, \(V_{m/0} \geq V_{m/1} - p\). The second condition is that an established firm is also willing to buy knowledge, that is, \(V_{m/1} - p \geq V_{m/0}\).
Therefore,

\[p = V_{m/1} - V_{m/0}. \] (33)

In addition, an established firm should be willing to sell its knowledge instead of discarding the knowledge, that is, \(V_{m/0} \leq p - \psi + V_{m/0} \). Combining with equation (28) that ensures positive mass of established firms in equilibrium gives

\[0 \leq p - \psi \leq V_{g/1} - V_{g/0}. \] (34)

We call stationary equilibrium in which both equations (33) and (34) are satisfied, and therefore established firms both create and buy knowledge, exploration equilibrium.

The following proposition characterizes exploration equilibrium.

Proposition 9 If

\[
\left[S (1 - \rho_0) + \rho_0 (1 - \rho_1 \rho_2) \right] \psi \\
\leq S (1 - \rho_0) (\rho_1 Y - C_1) + S (1 - \rho_1 \rho_2) C_0,
\] (35)

and

\[
\frac{(S - 1) (1 - \rho_0) \rho_1 (Y - \rho_2 C_0 - \rho_0 \rho_2 C_1)}{S (1 - \rho_0) + \rho_0 (1 - \rho_1 \rho_2) - \frac{S - 1}{S} (1 - \rho_0) \rho_0 \rho_1 \rho_2} \leq \psi,
\] (36)

then there exists exploration equilibrium. The equilibrium price of the knowledge is

\[
p = S (1 - \rho_0) (\rho_1 Y - C_1) + S (1 - \rho_1 \rho_2) C_0 + (S - 1) \rho_0 (1 - \rho_1 \rho_2) \psi \\
S (1 - \rho_0 \rho_1 \rho_2).
\] (37)

Proof. See Appendix.

The first condition (35) ensures that \(\psi \) is low enough for established firms to be willing to sell their unmatched knowledge. The second condition (36) ensures that \(\psi \) is high enough for young firms to not always sell their knowledge to established firms. Similarly to the results in the exploitation equilibrium, the knowledge price is increasing in the revenue, the cost of creating knowledge and the transaction cost and decreasing in the implementation cost.
The following corollary summarizes the necessary condition for existence of the two different types of stationary equilibrium we have discussed.

Corollary 7 Suppose that equation (35) holds. If equation (36) also holds, then exploration equilibrium exists but an exploitation equilibrium does not. If equation (36) does not hold, exploitation equilibrium exists but an exploration equilibrium does not.

Proof. It suffices to note that condition (31) and condition (35) are mutually exclusive. Q.E.D.

This corollary implies that there does not exist multiple equilibria given exogenous variables fixed. In particular, if the transaction cost is low, established firms buy knowledge from young firms. If the transaction cost is moderate, then established firms buy knowledge from other established firms. If transaction cost of acquisition is high, the market for knowledge does not exist in equilibrium.

We have established the property of equilibrium knowledge price given an equilibrium regime. The following corollary states that even the equilibrium regime switches due to changes in exogenous variables, the property of equilibrium knowledge price still remains.

Corollary 8 Knowledge price \(p \) is increasing in \(Y, \psi \) and \(C_0 \) and decreasing in \(C_1 \).

Proof. Let \(p_i \) be the knowledge price under exploitation equilibrium defined by equation (32) and \(p_r \) be the knowledge price under exploration equilibrium defined by equation (33). To prove this corollary, note that \(p_i = p_r \) when inequalities (31) and (35) are replaced by equality. Q.E.D.

3.6 Related Evidence

Consistent with Corollary 7, Lamoreaux and Sokoloff (2003) document that in 19th century U.S., the emergence of specialized inventors followed the introduction of the patent system. The patent system lowered the transaction
cost of selling knowledge by not only establishing property rights to knowledge but also creating intermediaries for the market of knowledge, such as patent lawyers.

In exploitation equilibrium, our model implies that sold knowledge had a greater life expectancy and also a higher profitability than non-transferred knowledge. This is because sold knowledge is implemented by the firms with the matching capabilities, whereas non-transferred knowledge may not be. Consistent with this prediction, Ravenscraft and Scherer (1987) find that acquired lines of business are of higher quality (usually measured by profitability) than those not acquired. Churchill (1955) finds that transferred businesses are more profitable than non-transferred businesses. Another interpretation of our model is to identify a venture capital funding as knowledge sales. Gorman and Sahlman (1989) and Hellmann and Puri (2002) document that venture capitalists frequently replace the management of their portfolio firms suggesting that the firms’ business were pushed forward by somebody different from the original creator of the business. Under this interpretation, our model predicts that venture capital backed firms perform better than other firms. Consistent with this prediction, Jain and Kini (2002) find that a VC-backed IPO firm will survive longer than non-VC-backed IPO firms. Hellmann and Puri (2000) find that VC-backed firms grow faster than non-VC backed firms.

Finally, our model also predicts that a young firm is more likely to fail than an established firm, as the former firm has to implement knowledge without knowing if the knowledge matches the firm’s capability. Jain and Kini (1994) find that IPO firms operating performance is worse than matching firm performance. Given that many IPO firms are new firms, their evidence suggests that implementation by new firms performs worse than that by established firms, being consistent with our model.

4 Sequential Learning

So far we have assumed that a young firm will exit the market once it fails in implementing knowledge. We now allow the young firm to stay in the
market after such a failure. With this modification, failing in implementing one type of knowledge is also valuable as it can help the firm to avoid wasting resources on implementing the same type of knowledge in the future (Teece, 1998).

Let $V_{g/0} [N]$ be the value of a young firm at the creation stage when it has failed in implementing exactly N different types of knowledge in the past for $N = 0, 1, ..., S - 2$. Then the firm will create knowledge of a type that it has already failed in implementing with probability N/S and it will create knowledge of a new type with probability $(S - N)/S$. Similarly, let $V_{g/1} [N]$ be the value of a young firm at the implementation stage. Then for $N = 0, 1, ..., S - 2$, we get

$$V_{g/0} [N] = \rho_0 \frac{N}{S} \max \{ p - \psi + V_{g/0} [N], V_{g/1} [N] - \psi \}$$

$$+ \rho_0 \frac{S - N}{S} \max \{ p - \psi + V_{g/0} [N], V_{g/1} [N] \} - C_0 \quad (38)$$

The young firm may create a type of knowledge that the firm has never implemented before or one that the firm has already failed in implementing. The former case is represented in the first line of equation (38) and the latter case is represented in the second line of equation (38). In the former case, the firm will choose to either sell knowledge and create another new knowledge to get $p - \psi + V_{g/0} [N]$, or sell knowledge and buy knowledge from another firm to get $p - \psi + V_{g/1} [N] - p = V_{g/1} [N] - \psi$. In the latter case, the firm will choose to either sell the knowledge and discover new knowledge to get $p - \psi + V_{g/0} [N]$ or implement the new knowledge to get $V_{g/1} [N]$.

The last term of equation (38) represents the cost of creating knowledge, similarly with the model in the previous sections.

Note that

$$V_{g/0} [S - 1] = V_{m/0},$$

since once the firm failed in implementing $S - 1$ different types of knowledge, the one type of knowledge that the firm has never implemented before should match the firm’s capability.

We now derive the firm value at the implementation stage. In particular, if the young firm has failed in implementing N different types of knowledge,
then the firm will only implement among the other \(S - N \) types of knowledge. Then, conditional on this pre-screening, for \(N = 0, 1, ..., S - 2 \) we get

\[
V_{g/1}[N] = \rho_1 \frac{1}{S - N} V_2 + \rho_1 \frac{S - N - 1}{S - N} \max \{ V_{g/0}[N + 1], V_{g/1}[N + 1] - p, 0 \}
\]

and

\[
V_{g/1}[S - 1] = V_{m/1}.
\]

The first term represents the value obtained if the knowledge type matches the firm’s capability. The second term represents the value obtained otherwise. Even if the implementation fails, the firm learns that the type of the knowledge it has just failed in implementing does not match the firm’s capability and therefore the counter increases from \(N \) to \(N + 1 \). Failing in implementing \(N + 1 \)th knowledge, the firm will choose to either create new knowledge to get \(V_{g/0}[N + 1] \) or buy knowledge to get \(V_{g/1}[N + 1] - p \), or exit the market to get 0.

The next proposition states that failing in implementing additional type of knowledge is naturally beneficial.

Proposition 10 Suppose that in equilibrium

\[
0 \leq p - \psi, \quad \quad p - \psi + V_{g/0}[0] \leq V_{g/1}[0]
\]

and

\[
V_{m/0} \leq V_{m/1} - p.
\]

Then,

\[
V_{g/i}[N - 1] \leq V_{g/i}[N], \text{ for } N = 1, ..., S - 1 \text{ and } i = 0, 1.
\]

Proof. See Appendix. ■

Intuition behind the proposition is straightforward. Failing in past attempts to implement knowledge allows the firm to narrow down the set of possible capabilities it has. Therefore, the firm’s value will increase with the number of past failures.
Proposition 11 For $N = 0, \ldots, S - 2,$

$$V_{g/1}[N] - V_{g/0}[N] < V_{g/1}[N + 1] - V_{g/0}[N + 1].$$

Proof. See Appendix. □

This proposition confirms the robustness of Proposition 4 and Proposition 5. According to Proposition 11, the benefit of buying and implementing the knowledge that may match the firm’s capability increases more quickly than the benefit of creating new knowledge, as the firm fails in implementing more types of knowledge. Consequently, as a firm experiences more failures in implementing knowledge, it becomes more willing to pay and buy knowledge instead of creating its own. Therefore, in equilibrium, older firms are more likely to buy knowledge than younger firms.

5 Conclusion

This paper models the difference of an established firm and a young firm by the knowledge of own capability; an established firm knows its own capability but a young firm does not know. This simple difference is enough to generate rich predictions. Our model implies that an established firm implements the knowledge it creates less often then a young firm, because an established firm can identify that knowledge may not fit its capability, whereas a young firm cannot. Our model also implies that a young firm may sell its knowledge to an established firm, but not the other way around, and sold knowledge should be implemented more successfully than unsold knowledge.

We also find that the transaction cost of selling knowledge has an important impact on the market for knowledge. When the transaction cost is moderate, established firms trade their knowledge each other. When the transaction cost is low, established firms do not create knowledge and buy it from young firms. Finally, our model suggests that it is important to distinguish the question, who creates knowledge, from the question, who implements knowledge. Our model predicts that those who implement knowledge are less likely to be those who create knowledge recently, due to declining cost of selling knowledge.
References

Appendix

This appendix gathers the proofs of the propositions for that we did not provide the proofs in the text.

Proof of Proposition 1

It suffices to show that

\[V_{m/1}(d^*) \geq V_{m/1}(d), \forall d \in 2^T_s. \]

Suppose that the type of the created knowledge is \(s_k = sf \). Let \(\tilde{d}, d \) be such that \(\tilde{d}(s_k) = 1, d(s_k) = 0 \). We will show that \(V_{m/1}(\tilde{d}) \geq V_{m/1}(d) \). Note that we do not constrain the firm policy in subsequent decisions. If the firm does not implement this knowledge, the value of the firm is equal to \(V_{m/0}(d) \). If the firm does implement this knowledge, the value of the firm is equal to

\[V_{m/1}(d) = \rho_1 Y - C_1 + \rho_2 \rho_1 V_{m/0}(d) \implies V_{m/1}(\tilde{d}) \geq \rho_1 Y - C_1 + \rho_2 \rho_1 V_{m/0}(d) \]

The second line follows because the continuation decisions of the firm are unconstrained, so given \(d \) the firm can do at least as well in policy \(\tilde{d} \) by replicating \(d \) in all subsequent histories. We want to show

\[\rho_1 Y - C_1 > (1 - \rho_2 \rho_1) V_{m/0}(d) \]

Let

\[\int_0^{\lambda_1^{-1} + \lambda_2^{-1}} ze^{-rt} dt = \rho_1 Y - C_1. \]

That is, \(z \) is per period cash flow for the expected duration of implementation plus harvesting periods that is equivalent to the payoff of implementing the knowledge that matches with the firm’s capability. Solving this equation gives

\[z = \frac{r(\rho_1 Y - C_1)}{1 - e^{-r(\lambda_1^{-1} + \lambda_2^{-1})}}. \]

Since the perpetuity of the hypothetical firm that implements and harvests the matched knowledge alone should be larger than the value of the firm
that also has to create new knowledge and may end up creating unmatched knowledge,

$$z > rV_{m/0}(d).$$

Integrating both sides of equation (40) from 0 to \(\lambda_{0}^{-1} + \lambda_{0}^{-2}\) give

$$\rho_{1}Y - C_{1} > \left(1 - e^{-r(\lambda_{1}^{-1} + \lambda_{2}^{-1})}\right)V_{m/0}(d).$$

Now we show that

$$e^{-r(\lambda_{1}^{-1} + \lambda_{2}^{-1})} < \rho_{1}\rho_{2},$$

which is alternatively

$$e^{r/\lambda_{2}}e^{r/\lambda_{3}} > \rho_{2}^{-1}\rho_{3}^{-1},$$

which is true, since \(e^{x} > 1 + x\), for \(x > 0\).

Suppose now that the type of the created knowledge is \(s_{k} \neq s_{f}\). Let \(\hat{d}, d\) be such that \(\hat{d}(s_{k}) = 0, d(s_{k}) = 1\). We will show that \(V_{m/1}(\hat{d}) \geq V_{m/1}(d)\). If the firm does not implement this knowledge, the value of the firm is equal to \(V_{m/0}(\hat{d})\). If the firm does implement this knowledge, the firm’s value is less than \(V_{m/0}(\hat{d})\) because it is equal to the present value of making loss plus the discounted value of \(V_{m/0}(d)\), which is not more than \(V_{m/0}(\hat{d})\). Since \(\hat{d} = d^{*}\), the proof is complete. Q.E.D.

Proof of Proposition 2

Suppose that the young firm has just created new knowledge. The value from implementing the knowledge given the policy \(d\) is

$$V_{g/1}(d) = -C_{1} + \rho_{1}\left(\frac{1}{S}V_{g/2}(d) + \frac{S-1}{S}0\right) = -C_{1} + \frac{1}{S}\rho_{1}V_{m/2},$$

where the second equality follows by noting that a young firm becomes established when it starts generating revenue. This expression is positive by Assumption 1, so it remains to prove that the value from implementing immediately is greater than the value from not implementing the knowledge \(V_{g/0}(d)\).

\[
\begin{align*}
V_{g/0} &= -C_{0} + \rho_{0}(-C_{1} + \rho_{1}V_{g/2}) \\
V_{g/2} - V_{g/0} &= V_{g/2}(1 - \rho_{0}) + C_{0}
\end{align*}
\]
The last expression is positive, so the proof is complete. Q.E.D.

Proof of Proposition 3

According to the asset pricing formula, the value of the firm depending on its knowledge cycle is

\[
(r + \lambda_0) V_{i/0} = -c_0 + \frac{\lambda_0}{S} V_{i/1} + \frac{\lambda_0 (S - 1)}{S} V_{i/0} \quad i \in \{g, m\}, \quad (41)
\]

\[
(r + \lambda_1) V_{g/1} = -c_1 + \frac{\lambda_1 V_{g/2}}{S}, \quad (42)
\]

\[
(r + \lambda_1) V_{m/1} = -c_1 + \lambda_1 V_{m/2}, \quad (43)
\]

and

\[
(r + \lambda_2) V_{i/2} = y + \lambda_2 V_{m/0} \quad i \in \{y, m\}.
\]

As there are eight independent equations and eight unknowns, we can obtain the explicit formula of each firm value. Solving this system yields the results. Q.E.D.

Proof of Proposition 5

We prove this proposition by contradiction. Suppose that equations (24) and (27) hold simultaneously. Then,

\[
V_{g/1} - V_{g/0} \geq V_{m/1} - V_{m/0}. \quad (44)
\]

If \(V_{m/0} + p - \psi \geq \max \{ V_{m/0}, V_{m/1} - p \} \), that is, an established firm is willing to be acquired, then substituting the definition of \(V_{g/0} \) and \(V_{m/0} \) into equation (44) and rearranging the terms given equations (24) and (27), we have

\[
V_{g/1} - \rho_0 \max \{ V_{g/1} - \psi, V_{g/1} \} \geq V_{m/1} - \frac{1}{S} \rho_0 V_{m/1} - \frac{S - 1}{S} \rho_0 \left(V_{m/0} + p - \psi \right).
\]

As \(\psi > 0 \), after rearranging we can rewrite this inequality as

\[
(1 - \rho_0) (V_{g/1} - V_{m/1}) \geq \frac{S - 1}{S} \rho_0 \left(V_{m/1} - V_{m/0} - p + \psi \right) \geq 0.
\]
The second inequality follows because \(V_{m/1} \geq V_{m/0} + p - \psi \) (i.e. implementing the knowledge that matches the firm’s capability is more profitable than selling it to a third party). Nevertheless, by equations (20) and (23), \(V_{m/1} > V_{g/1} \) since \(S > 1 \) and \(V_2 > 0 \). This is contradiction. Q.E.D.

Proof of Proposition 6

In exploitation equilibrium, the system of the following Bellman equations holds:

\[
\begin{align*}
V_2 &= Y + \rho_2(V_{m/1} - p), \\
V_{m/1} &= -C_1 + \rho_1 V_2, \\
V_{g/1} &= -C_1 + \frac{\rho_1}{S} V_2, \text{ and} \\
V_{g/0} &= -C_0 + \rho_0 V_{g/1}.
\end{align*}
\]

(45)

Solving for \(V_2 \), \(V_{m/1} \) and then \(V_{g/1} \) gives

\[
\begin{align*}
V_2 &= \frac{Y - \rho_2(p + C_1)}{1 - \rho_1 \rho_2}, \\
V_{m/1} &= -C_1 + \rho_1 \frac{Y - \rho_2(p + C_1)}{1 - \rho_1 \rho_2} \text{ and} \\
V_{g/1} &= -C_1 + \frac{\rho_1 Y - \rho_2(p + C_1)}{S}.
\end{align*}
\]

(46) (47) (48)

Sticking \(V_{g/1} \) into equation (30) and solving for \(p \) give equation (32).

It remains to show that an established firm is willing to pay this price to start implementing knowledge immediately, instead of creating knowledge by itself. Recall that when there exists a market for knowledge, the established firm that has just experienced the end of harvesting has value

\[
V_{m/0} = -C_0 + \frac{1}{S} \rho_0 V_{m/1} + \frac{S - 1}{S} \rho_0 (p - \psi + \max \{ V_{m/0}, V_{m/1} - p \})
\]

In exploitation equilibrium, equation (27) must hold, so we get

\[
V_{m/0} = -C_0 + \frac{1}{S} \rho_0 V_{m/1} + \frac{S - 1}{S} \rho_0 (V_{m/1} - \psi)
\]

43
Sticking the equilibrium price p and $V_{m/1}$ we get
\[V_{m/0} = \frac{S\rho_0\rho_1 Y - [S - (S - 1) \rho_1 \rho_2 (1 - \rho_0)] (C_0 + \rho_0 C_1) - [S - 1 + \rho_1 \rho_2 + (1 - \rho_0) \frac{S - 1}{S - 1} \rho_1 \rho_2] \rho_0 \psi}{S(1 - \rho_1 \rho_2) + \rho_1 \rho_2 (1 - \rho_0)} \]

Sticking the expressions for $V_{m/0}, V_{m/1}$ and p into equation (27) and rearranging terms, we get
\[\psi \leq \frac{(S - 1)(1 - \rho_0)\rho_1 (Y - \rho_2 C_0 - \rho_0 \rho_2 C_1)}{S(1 - \rho_0) + \rho_0 (1 - \rho_1 \rho_2) - \frac{S - 1}{S - 1} (1 - \rho_0) \rho_0 \rho_1 \rho_2} \]
then it is optimal for the established firm to buy new knowledge. Q.E.D.

Proof of Proposition 7

Sticking $M_0 = 0$, $H_m^2 = 1$, $H_m^0 = 0$ into the system of equations (14)-(18) we get
\[
\begin{align*}
[\mu + \lambda_0 (1 - H_g)] G_0 &= N \\
(\mu + \lambda_1) G_1 &= \lambda_0 (1 - H_g) G_0 \\
(\mu + \lambda_1) M_1 &= \lambda_2 M_2 \\
(\mu + \lambda_2) M_2 &= \frac{\lambda_1 G_1}{S} + \lambda_1 M_1
\end{align*}
\]

The market clearing condition for the exploitation equilibrium becomes
\[\lambda_2 M_2 = \lambda_0 H_g G_0 \]

Therefore, the ratio of knowledge transfers is
\[H_g = \frac{\lambda_2 M_2}{\lambda_0 G_0} \]
Solving gives the stationary distribution of firms expressed by equations (49).

\[
G_0 = \frac{S\mu (\mu + \lambda_1 + \lambda_2) - \lambda_1 \lambda_2}{(\mu + \lambda_0) [S\mu (\mu + \lambda_1 + \lambda_2) - \lambda_1 \lambda_2] - \lambda_0 \lambda_1 \lambda_2} N, \\
G_1 = \frac{S\mu \lambda_0 (\mu + \lambda_1 + \lambda_2)}{(\mu + \lambda_1) [S\mu (\mu + \lambda_1 + \lambda_2) - \lambda_1 \lambda_2] - \lambda_0 \lambda_1 \lambda_2} N, \\
M_0 = 0, \\
M_1 = \frac{\lambda_0 \lambda_1 \lambda_2}{(\mu + \lambda_0) [S\mu (\mu + \lambda_1 + \lambda_2) - \lambda_1 \lambda_2] - \lambda_0 \lambda_1 \lambda_2} N, \\
M_2 = \frac{\lambda_0 \lambda_1 \lambda_2}{(\mu + \lambda_0) [S\mu (\mu + \lambda_1 + \lambda_2) - \lambda_1 \lambda_2] - \lambda_0 \lambda_1 \lambda_2} N, \\
\]

(49)

Therefore, the ratio of knowledge transfers is

\[
H_g = \frac{\lambda_2 M_2}{\lambda_0 G_0} = \frac{\lambda_1 \lambda_2}{S\mu (\mu + \lambda_1 + \lambda_2) - \lambda_1 \lambda_2},
\]

which is decreasing in \(\mu\) and \(S\), and increasing in \(\lambda_1\) and \(\lambda_2\). Q.E.D.

\section*{Proof of Proposition 8}

Sticking equation (32) into equation (47) for \(p\) gives the closed form solution of \(V_{m/1}\)

\[
V_{m/1} = \frac{S [\rho_1 Y - \rho_1 \rho_2 (\psi + C_0)] - [S - (S - 1) \rho_1 \rho_2 (1 - \rho_0)] C_1}{S (1 - \rho_1 \rho_2) + \rho_1 \rho_2 (1 - \rho_0)},
\]

Sticking equation (32) into equation (46) for \(p\) gives the closed form solution of \(V_2\)

\[
V_2 = \frac{S [Y - \rho_2 (\psi + C_0) - \rho_0 \rho_2 C_1]}{S (1 - \rho_1 \rho_2) + \rho_1 \rho_2 (1 - \rho_0)}.
\]

Sticking equation (32) into equation (48) for \(p\) gives the closed form solution of \(V_{g/1}\)

\[
V_{g/1} = \frac{\rho_1 Y - \rho_1 \rho_2 (\psi + C_0) - [S (1 - \rho_1 \rho_2) + \rho_1 \rho_2] C_1}{S (1 - \rho_1 \rho_2) + \rho_1 \rho_2 (1 - \rho_0)}.
\]

Sticking equation (32) into equation (45) for \(p\) gives the closed form solution of \(V_{g/0}\)

\[
V_{g/0} = \frac{\rho_0 \rho_1 Y - \rho_0 \rho_1 \rho_2 \psi - [S (1 - \rho_1 \rho_2) + \rho_1 \rho_2] C_0 - [S \rho_0 (1 - \rho_1 \rho_2) + \rho_0 \rho_1 \rho_2] C_1}{S (1 - \rho_1 \rho_2) + \rho_1 \rho_2 (1 - \rho_0)}.
\]

45
It is obvious that both $V_{g/0}$ and $V_{g/1}$ are decreasing in S. Differentiating V_2 and $V_{m/1}$ by S gives

$$\frac{dV_2}{dS} = \frac{|Y - \rho_0(\psi + C_0) - \rho_0 \rho_2 C_1| \rho_1 \rho_2 (1 - \rho_0)}{|S(1 - \rho_2) + \rho_1 \rho_2 (1 - \rho_0)|} > 0,$$

and

$$\frac{dV_{m/1}}{dS} = \rho_1 \frac{dV_2}{dS} > 0.$$

Therefore, the proposition follows. Q.E.D.

Proof of Proposition 9

As previously argued, equation (33) needs to hold in a stationary equilibrium such that $M_1, M_2 > 0$. In a stationary equilibrium of interest, the system of the following Bellman equations holds:

$$V_2 = Y + \rho_2 V_{m/0},$$
$$V_{m/0} = -C_0 + \rho_0 \left(\frac{V_{m/1}}{S} + \frac{S - 1}{S} (V_{m/1} - \psi) \right),$$
$$V_{m/1} = -C_1 + \rho_1 V_2,$$
$$V_{g/1} = -C_1 + \rho_1 \frac{V_2}{S},$$
$$V_{g/0} = -C_0 + \rho_0 V_{g/1}.$$

Note that in the second equation we used the fact that in the equilibrium of interest an established firm that created knowledge that does not match its capability will hold knowledge that it can sell for $p - \psi$ and then it may purchase knowledge that matches its capability, getting $V_{m/1} - p$. Solving for $V_2, V_{m/0}, V_{m/1}, V_{g/1}$ and $V_{g/0}$ gives

$$V_2 = Y + \rho_2 \alpha_{m/0} \Phi_{m/0},$$
$$V_{m/0} = \alpha_{m/0} \Phi_{m/0},$$
$$V_{m/1} = -C_1 + \rho_1 \left(Y + \rho_2 \alpha_{m/0} \Phi_{m/0} \right),$$
$$V_{g/1} = -C_1 + \rho_1 \frac{Y + \rho_2 \alpha_{m/0} \Phi_{m/0}}{S} \text{ and}$$
$$V_{g/0} = -C_0 + \rho_0 \left(\frac{\rho_1}{S} Y + \rho_1 \rho_2 \alpha_{m/0} \Phi_{m/0} - C_1 \right),$$

46
where
\[\alpha_{m/0} = (S (1 - \rho_0 \rho_1 \rho_2))^{-1} \]
and
\[\Phi_{m/0} = S \rho_0 (\rho_1 Y - C_1) - SC_0 - (S - 1) \rho_0 \psi. \]
Substituting equations (50) and (51) for \(V_{m/0} \) and \(V_{m/1} \) into equation (33) and solving for \(p \) give equation (37).

It remains to show that equation (34) is satisfied. Substituting into equation (34), equation (50) for \(V_{m/0} \), equation (52) for \(V_{g/1} \), and equation (37) for \(p \) give the necessary conditions (35) and (36). Q.E.D.

Proof of Proposition 10

The idea behind the proof is that the firm that has experienced \(N \) previous failures to implement knowledge can replicate what the firm that has experienced \(N - 1 \) previous failures with respect to the \(N - 1 \) types that failed to implement in the past. Then the extra knowledge of the firm that has experienced \(N \) previous failures will ensure that it performs better than the firm that has experienced \(N - 1 \) previous failures with respect to the knowledge type for which the firm with \(N - 1 \) failures has no previous experience.

We first prove the following lemmas.

Lemma 1 Suppose that the assumptions stated in Proposition 8 hold. Then, one of the three cases is true. The first case is

\[p - \psi + V_{g/0\quad \left[N\right]} \geq V_{g/1\quad \left[N\right]} \]

and therefore,
\[V_{g/0\quad \left[N\right]} = -C_0 + \rho_0 \left(p - \psi + V_{g/0\quad \left[N\right]}\right). \]

The second case is \(p - \psi + V_{g/0\quad \left[N\right]} \leq V_{g/1\quad \left[N\right]} \) and \(V_{g/1\quad \left[N\right]} - p \leq V_{g/0\quad \left[N\right]} \) and therefore,
\[V_{g/0\quad \left[N\right]} = -C_0 + \rho_0 \frac{N}{S} \left(p - \psi + V_{g/0\quad \left[N\right]}\right) + \rho_0 \frac{S - N}{S} V_{g/1\quad \left[N\right]}. \]
The third case is \(p - \psi + V_{g/0}[N] \leq V_{g/1}[N] \) and \(V_{g/0}[N] \leq V_{g/1}[N] - p \) and therefore,

\[
V_{g/0}[N] = -C_0 + \rho_0 \frac{N}{S} (V_{g/1}[N] - \psi) + \rho_0 \frac{S - N}{S} V_{g/1}[N]
\]

Proof. There are two maximum brackets in the right hand side of the equation

\[
V_{g/0}[N] = \rho_0 \frac{N}{S} \max \{p - \psi + V_{g/0}[N], V_{g/1}[N] - \psi\}
+ \rho_0 \frac{S - N}{S} \max \{p - \psi + V_{g/0}[N], V_{g/1}[N]\} - C_0
\]

Each bracket has two entries, so there are four cases depending on which entry is the maximum at each bracket. However, \(V_{g/1}[N] > V_{g/1}[N] - \psi \), so it suffices to consider the three cases stated in the lemma.

Lemma 2 Suppose that the assumptions stated in Proposition 8 hold. Then, \(V_{g/i}[S - 1] > V_{g/i}[S - 2] \) for \(i = 0, 1 \).

Proof. Note that

\[
V_{g/1}[S - 2] = -C_1 + \frac{1}{2} \rho_1 V_2 + \frac{1}{2} \rho_1 \max \{ V_{g/0}[S - 1], V_{g/1}[S - 1] - p, 0 \}
= -C_1 + \frac{1}{2} \rho_1 V_2 + \frac{1}{2} \rho_1 \max \{ V_{m/1} - p, 0 \}
= \frac{1}{2} V_{m/1} + \frac{1}{2} (-C_1 + \rho_1 \max \{ V_{m/1} - p, 0 \})
< V_{m/1} = V_{g/1}[S - 1]
\]

It remains to show that \(V_{g/0}[S - 2] < V_{g/0}[S - 1] \). Using Lemma 1, it suffices to consider the following three cases. Suppose that (i) \(p - \psi + V_{g/0}[S - 2] \geq V_{g/1}[S - 2] \). Then we get

\[
V_{g/0}[S - 2] = -C_0 + \rho_0 (p - \psi + V_{g/0}[S - 2])
\]
and
\[
V_{g/0}[S - 1] = -C_0 + \frac{1}{S} \rho_0 V_{g/1} [S - 1] + \frac{S - 1}{S} \rho_0 (p - \psi + \max \{V_{m/0}, V_{m/1} - p\})
\]
\[
\geq -C_0 + \frac{1}{S} \rho_0 V_{g/1} [S - 1] + \frac{S - 1}{S} \rho_0 (p - \psi + V_{g/0} [S - 1])
\]
\[
\geq -C_0 + \frac{1}{S} \rho_0 (V_{g/0} [S - 1] + p) + \frac{S - 1}{S} \rho_0 (p - \psi + V_{g/0} [S - 1])
\]
\[
> -C_0 + \frac{1}{S} \rho_0 (V_{g/0} [S - 1] + p) + \frac{S - 1}{S} \rho_0 (p - \psi + V_{g/0} [S - 1])
\]
\[
= -C_0 + \rho_0 (p - \psi + V_{g/0} [S - 1])
\]

Therefore,
\[
V_{g/0} [S - 1] > \frac{-C_0 + \rho_0 (p - \psi)}{1 - \rho_0} = V_{g/0} [S - 2]
\]

Suppose now that (ii) \(p - \psi + V_{g/0} [S - 2] \leq V_{g/1} [S - 2] \) and \(V_{g/1} [S - 2] - p \leq V_{g/0} [S - 2] \). Then

\[
V_{g/0} [S - 2] = -C_0 + \rho_0 \frac{S - 2}{S} (p - \psi + V_{g/0} [S - 2]) + \rho_0 \frac{2}{S} V_{g/1} [S - 2],
\]

which is equivalent to

\[
\left(1 - \rho_0 \frac{S - 2}{S}\right) V_{g/0} [S - 2] = -C_0 + \rho_0 (p - \psi) + \rho_0 \frac{2}{S} V_{g/1} [S - 2]
\]

and
\[
V_{g/0} [S - 1] = -C_0 + \frac{S - 2}{S} \rho_0 \max \{p - \psi + V_{g/0} [S - 1], V_{g/1} [S - 1] - \psi\}
\]
\[
+ \frac{1}{S} \rho_0 \max \{p - \psi + V_{g/0} [S - 1], V_{g/1} [S - 1] - \psi\}
\]
\[
+ \frac{1}{S} \rho_0 V_{g/1} [S - 1]
\]
\[
\geq -C_0 + \frac{S - 2}{S} \rho_0 (p - \psi + V_{g/0} [S - 1])
\]
\[
+ \frac{1}{S} \rho_0 (V_{g/1} [S - 1] - \psi) + \frac{1}{S} \rho_0 V_{g/1} [S - 1].
\]

Therefore,
\[
\left(1 - \rho_0 \frac{S - 2}{S}\right) V_{g/0} [S - 1] \geq -C_0 + \frac{S - 2}{S} \rho_0 (p - \psi) + \frac{1}{S} \rho_0 (V_{g/1} [S - 1] - \psi)
\]
\[
+ \frac{1}{S} \rho_0 V_{g/1} [S - 1].
\]
It suffices to show that
\[
\frac{1}{S}\rho_0 (V_{g/1} [S - 1] - \psi) + \frac{1}{S}\rho_0 V_{g/1} [S - 1] > \frac{2}{S} V_{g/1} [S - 2].
\]
Note that
\[
\rho_0 \frac{2}{S} V_{g/1} [S - 2] = \rho_0 \frac{2}{S} \left\{ \frac{1}{2} V_{g/1} [S - 1] + \frac{1}{2} (-C_1 + \max \{ V_{g/1} [S - 1] - p, 0 \}) \right\}
\]
\[
= \frac{1}{S}\rho_0 V_{g/1} [S - 1] + \frac{1}{S}\rho_0 \left\{ -C_1 + \max \{ V_{g/1} [S - 1] - p, 0 \} \right\}.
\]
Since \(V_{g/1} [S - 1] - \psi = p - \psi + V_{g/1} [S - 1] - p > V_{g/1} [S - 1] - p \), the proof for case (ii) is complete. It remains to examine the case (iii) \(p - \psi + V_{g/0} [N] \leq V_{g/1} [N] \) and \(V_{g/0} [N] \leq V_{g/1} [N] - p \). This follows exactly the same steps as case (ii), so we conclude that \(V_{g/0} [S - 2] < V_{g/0} [S - 1] \).

Lemma 3 Suppose that the assumptions stated in Proposition 8 hold. Then, \(V_{g/1} [N] > V_{g/0} [N] \) for \(N = 0, 1, ..., S - 1 \).

Proof. \(V_{g/1} [N] > V_{g/0} [N] \) holds for \(N = 0 \) and \(N = S - 1 \) so it remains to show that it holds for \(N = 1, 2, ..., S - 2 \). When \(p - \psi + V_{g/0} [N] < V_{g/1} [N] \) the result is immediate since by assumption \(p - \psi > 0 \). It remains to show the result when \(p - \psi + V_{g/0} [N] \geq V_{g/1} [N] \), so \(V_{g/0} [N] = -C_0 + \rho_0 (p - \psi + V_{g/0} [N]) \). Let \(N' \) be the highest \(N \) such that \(p - \psi + V_{g/0} [N] \geq V_{g/1} [N] \), so for \(N > N' \), \(V_{g/1} [N] > p - \psi + V_{g/0} [N] \). Note that
\[
V_{g/1} \left[N' \right] = -C_1 + \frac{1}{S - N'} \rho_1 V_2 + \frac{S - N' - 1}{S - N'} \rho_1 \max \left\{ V_{g/0} \left[N' + 1 \right], V_{g/1} \left[N' + 1 \right] - p, 0 \right\}
\]
\[
\leq p - \psi + V_{g/0} \left[N' \right]
\]
Then, since \(V_{g/1} [N] < p \), we get
\[
\max \left\{ V_{g/0} \left[N' \right], V_{g/1} \left[N' \right] - p, 0 \right\}
\]
\[
= \max \left\{ V_{g/0} \left[N' \right], 0 \right\}
\]
\[
= \max \left\{ -C_0 + \rho_0 \left(p - \psi + V_{g/0} \left[N' \right] \right), 0 \right\}
\]
50
Recall that \(V_{g/0} \left[N' + 1 \right], V_{g/1} \left[N' + 1 \right] - p, 0 \) \(\geq \max \left\{ V_{g/0} \left[N' \right], V_{g/1} \left[N' \right] - p, 0 \right\} \)

and it is immediate that

\[
V_{g/1} \left[N' - 1 \right] < V_{g/1} \left[N' \right] \leq p - \psi + V_{g/0} \left[N' \right]
\]

By induction, \(V_{g/1} \left[0 \right] < p - \psi + V_{g/0} \left[0 \right] \), which is a contradiction.

Now we are ready to prove Proposition 8. We will first show that \(V_{g/1} \left[N - 1 \right] < V_{g/1} \left[N \right] \) for \(N = 0, 1, ..., S - 1 \). Recall that

\[
V_{g/1} \left[N \right] = -C_1 + \frac{1}{S - N} \rho_1 V_2 + \frac{S - N - 1}{S - N} \rho_1 \max \{ V_{g/0} \left[N + 1 \right], V_{g/1} \left[N + 1 \right] - p, 0 \}
\]

From Lemma 2, \(V_{g/1} \left[N - 1 \right] < V_{g/1} \left[N \right] \) holds for \(N = S - 1 \). We will show that \(V_{g/1} \left[S - 3 \right] < V_{g/1} \left[S - 2 \right] \), that is the proposition holds for \(N = S - 2 \).

Note that

\[
V_{g/1} \left[S - 3 \right] = -C_1 + \frac{1}{3} \rho_1 V_2 + \frac{2}{3} \rho_1 \max \{ V_{g/0} \left[S - 2 \right], V_{g/1} \left[S - 2 \right] - p, 0 \}
\]

\[
V_{g/1} \left[S - 2 \right] = -C_1 + \frac{1}{2} \rho_1 V_2 + \frac{1}{2} \rho_1 \max \{ V_{g/0} \left[S - 1 \right], V_{g/1} \left[S - 1 \right] - p, 0 \}
\]

Since \(\max \{ V_{g/0} \left[S - 1 \right], V_{g/1} \left[S - 1 \right] - p, 0 \} > \max \{ V_{g/0} \left[S - 2 \right], V_{g/1} \left[S - 2 \right] - p, 0 \} \), we get

\[
V_{g/1} \left[S - 3 \right] < -C_1 + \frac{1}{3} \rho_1 V_2 + \frac{2}{3} \rho_1 \max \{ V_{g/0} \left[S - 1 \right], V_{g/1} \left[S - 1 \right] - p, 0 \}
\]

\[
= \frac{1}{3} \left(V_{m/1} + \frac{2}{3} \left(-C_1 + \rho_1 \max \{ V_{g/0} \left[S - 1 \right], V_{g/1} \left[S - 1 \right] - p, 0 \} \right) \right)
\]

Subtracting \(V_{g/1} \left[S - 2 \right] \) from the last expression gives

\[
V_{g/1} \left[S - 2 \right] - V_{g/1} \left[S - 3 \right] > \frac{1}{6} \left(V_{m/1} - C_1 + \rho_1 \max \{ V_{m/1} - p, 0 \} \right) > 0
\]

Then by induction we get \(V_{g/1} \left[N - 1 \right] < V_{g/1} \left[N \right] \) for \(N = 0, 1, ..., S - 1 \).

It remains to show that \(V_{g/0} \left[N - 1 \right] < V_{g/0} \left[N \right] \) for \(N = 0, 1, ..., S - 1 \).

Recall that

\[
V_{g/0} \left[N \right] = \rho_0 \frac{N}{S} \max \{ p - \psi + V_{g/0} \left[N \right], V_{g/1} \left[N \right] - \psi \}
\]

\[
+ \rho_0 \frac{S - N}{S} \max \{ p - \psi + V_{g/0} \left[N \right], V_{g/1} \left[N \right] \} - C_0
\]

\[51\]
From Lemma 2, $V_{g/0}[N-1] < V_{g/0}[N]$ holds for $N = S - 1$. We will show that $V_{g/0}[S-3] < V_{g/0}[S-2]$, that is the proposition holds for $N = S - 2$. Using Lemma 1, it suffices to consider three cases for each of $V_{g//0}[S-3]$, $V_{g//0}[S-2]$. Suppose that $p - \psi + V_{g//0}[S-2] \leq V_{g//1}[S-2]$ and $V_{g//1}[S-2] - p \leq V_{g//0}[S-2]$. Then

$$V_{g//0}[S-2] = -C_0 + \rho_0 \frac{S-2}{S} (p - \psi + V_{g//0}[S-2]) + \frac{2}{S} V_{g//1}[S-2]$$

Suppose that $p - \psi + V_{g//0}[S-3] \leq V_{g//1}[S-3]$ and $V_{g//1}[S-3] - p \leq V_{g//0}[S-3]$. Then

$$V_{g//0}[S-3] = -C_0 + \rho_0 \frac{S-3}{S} (p - \psi + V_{g//0}[S-3]) + \rho_0 \frac{3}{S} V_{g//1}[S-3]$$

Following the same logic as in Lemma 2, we get

$$V_{g//0}[S-2] = -C_0 + \rho_0 \frac{S-2}{S} (p - \psi + V_{g//0}[S-2]) + \rho_0 \frac{1}{S} (p - \psi + V_{g//0}[S-2]) + \frac{2}{S} V_{g//1}[S-2]$$

It suffices to show that

$$\rho_0 \frac{1}{S} (p - \psi + V_{g//0}[S-2]) + \rho_0 \frac{2}{S} V_{g//1}[S-2] > \rho_0 \frac{3}{S} V_{g//1}[S-3]$$

which holds, similarly to the derivation in Lemma 2. We can prove the other cases similarly, so $V_{g//0}[S-3] < V_{g//0}[S-2]$ and by induction we get $V_{g//0}[N-1] < V_{g//0}[N]$ for $N = 0, 1, ..., S - 1$. Q.E.D.

Proof of Proposition 11

As preparation to prove the proposition 9, we introduce the following notation.

$$L = \{ N | V_{g/1}[N] - p + \psi < V_{g/0}[N] \} ,$$

$$D = \{ N | V_{g/1}[N] - p < V_{g/0}[N] \}$$

and

$$B = \{ N | V_{g/0}[N] \leq V_{g/1}[N] - p \} ,$$

and prove the following two lemmas. Q.E.D.
Lemma 4 If $N \in B$ and $N' > N$, then $N' \in B$.

Proof. It suffices to show that if $N \in B$ then $N + 1 \in B$. We prove the lemma by contradiction. Suppose that $N + 1 \in D$. Then we have $V_{g/0} [N] \leq V_{g/1} [N] - p$ and $V_{g/1} [N + 1] - p < V_{g/0} [N + 1] \leq V_{g/1} [N + 1] - p + \psi$ so we get

$$V_{g/1} [N + 1] - V_{g/0} [N + 1] < p \leq V_{g/1} [N] - V_{g/0} [N] \quad (54)$$

Given that $N + 1 \in D$ and $N \in B$, using equation (38), we have

$$V_{g/0} [N] = -C_0 + \rho_0 \frac{N}{S} (V_{g/1} [N] - \psi) + \rho_0 \frac{S - N}{S} V_{g/1} [N]$$

$$V_{g/0} [N + 1] = -C_0 + \rho_0 \frac{N + 1}{S} (p - \psi + V_{g/0} [N + 1])$$

$$+ \rho_0 \frac{S - N - 1}{S} V_{g/1} [N + 1]$$

Subtracting these two equations and dividing both hand-sides by ρ_0, we get

$$\frac{(V_{g/0} [N + 1] - V_{g/0} [N])}{\rho_0} = \frac{N + 1}{S} (p + V_{g/0} [N + 1] - V_{g/1} [N + 1]) + (V_{g/1} [N + 1] - V_{g/1} [N]) - \frac{1}{S} \psi$$

$$< \frac{S - N - 1}{S} (V_{g/1} [N + 1] - V_{g/1} [N]) + \frac{N + 1}{S} (V_{g/0} [N + 1] - V_{g/0} [N]) .$$

The inequality follows because $0 \leq \psi$ and $p \leq V_{g/1} [N] - V_{g/0} [N]$ since $N \in B$. After re-arranging this inequality, we have

$$\left(1 - \rho_0 \frac{N + 1}{S}\right) (V_{g/0} [N + 1] - V_{g/0} [N]) < \rho_0 \left(1 - \frac{N + 1}{S}\right) (V_{g/1} [N + 1] - V_{g/1} [N])$$

Since $1 - \rho_0 \frac{N + 1}{S} > \rho_0 \left(1 - \frac{N + 1}{S}\right)$, we get $V_{g/0} [N + 1] - V_{g/0} [N] < V_{g/1} [N + 1] - V_{g/1} [N]$ which is contradiction to the equation (??). Therefore it cannot be the case that $N + 1 \in D$. Similarly we can show that it cannot be the case that $N + 1 \in L$. Therefore, $N + 1 \in B$ and the proof is complete.

Lemma 5 If $N \in D$, then $N + 1 \notin L$.

Proof. Let $N \in D$. Then, we have $V_{g/1} [N] - p < V_{g/0} [N] \leq V_{g/1} [N] - p + \psi$. Suppose that $N + 1 \in L$. Then, $V_{g/1} [N + 1] - p + \psi < V_{g/0} [N + 1]$. Using
equation (38), we have
\[
V_{g/0}[N] = -C_0 + \rho_0 \frac{N}{S} (p - \psi + V_{g/0}[N]) + \rho_0 \frac{S - N}{S} V_{g/1}[N]
\]
and
\[
V_{g/0}[N + 1] = -C_0 + \rho_0 (p - \psi + V_{g/0}[N + 1]).
\]
Subtracting these two equations, we get
\[
V_{g/0}[N + 1] - V_{g/0}[N] = \rho_0 (p - \psi + V_{g/0}[N + 1] - V_{g/0}[N]) - \rho_0 \frac{N}{S} (p - \psi + V_{g/0}[N] - V_{g/1}[N]).
\]
After re-arranging, we have
\[
(1 - \rho_0) (V_{g/0}[N + 1] - V_{g/0}[N]) = \rho_0 \frac{S - N}{S} (p - \psi + V_{g/0}[N] - V_{g/1}[N]).
\]
Note that the right hand side is non-positive. Then, since \(V_{g/0}[N + 1] - V_{g/0}[N] \geq 0\), we get \(V_{g/0}[N + 1] = V_{g/0}[N]\). Moreover, from \(N \in \mathbf{D}\) and \(N+1 \in \mathbf{L}\) we get \(V_{g/1}[N + 1] - V_{g/0}[N + 1] < p - \psi \leq V_{g/1}[N] - V_{g/0}[N] \implies V_{g/1}[N + 1] < V_{g/1}[N]\) which is contradiction. Therefore it cannot be the case that \(N + 1 \in \mathbf{L}\).

Since \(0 \in \mathbf{D}\) by assumption, Lemma 4 and Lemma 5 imply that \(N \notin \mathbf{L}\) for \(\forall N\). We now prove that \(V_{g/1}[N] - V_{g/0}[N] < V_{g/1}[N + 1] - V_{g/0}[N + 1]\) for two cases. One is \(N \in \mathbf{D}\) and the other is \(N \in \mathbf{B}\). First, suppose that \(N \in \mathbf{D}\). If \(N + 1 \in \mathbf{B}\) the result is immediate. Suppose that \(N + 1 \in \mathbf{D}\). Then \(V_{g/1}[N] - p < V_{g/0}[N] \leq V_{g/1}[N] - p + \psi\) and \(V_{g/1}[N + 1] - p < V_{g/0}[N + 1] \leq V_{g/1}[N + 1] - p + \psi\). Then we have
\[
V_{g/0}[N] = -C_0 + \rho_0 \frac{N}{S} (p - \psi + V_{g/0}[N]) + \rho_0 \frac{S - N}{S} V_{g/1}[N]
\]
\[
V_{g/0}[N + 1] = -C_0 + \rho_0 \frac{N + 1}{S} (p - \psi + V_{g/0}[N + 1]) + \rho_0 \frac{S - N - 1}{S} V_{g/1}[N + 1]
\]
Subtracting the equations and re-arranging, we get
\[
V_{g/0}[N + 1] - V_{g/0}[N] < \rho_0 \frac{S - N - 1}{S} (V_{g/1}[N + 1] - V_{g/1}[N]) + \rho_0 \frac{N + 1}{S} (V_{g/0}[N + 1] - V_{g/0}[N])
\]

54
After re-arranging,

\[
\left(1 - \rho_0 \frac{N + 1}{S}\right) \left(V_{g/0}\left[N + 1\right] - V_{g/0}\left[N\right]\right)
\]

\[
< \rho_0 \left(1 - \frac{N + 1}{S}\right) \left(V_{g/1}\left[N + 1\right] - V_{g/1}\left[N\right]\right)
\]

Since \(1 - \rho_0 \frac{N + 1}{S} > \rho_0 \left(1 - \frac{N + 1}{S}\right)\), we get

\[
V_{g/0}\left[N + 1\right] - V_{g/0}\left[N\right] < V_{g/1}\left[N + 1\right] - V_{g/1}\left[N\right]
\]

or

\[
V_{g/0}\left[N\right] < V_{g/1}\left[N + 1\right] - V_{g/0}\left[N + 1\right]
\]

Suppose now that \(N \in \mathbf{B}\). Then we have \(N + 1 \in \mathbf{B}\), so \(V_{g/0}\left[N\right] \leq V_{g/1}\left[N\right] - p\) and \(V_{g/0}\left[N + 1\right] \leq V_{g/1}\left[N + 1\right] - p\). Then we have

\[
V_{g/0}\left[N\right] = -C_0 + \rho_0 \frac{N}{S} \left(V_{g/1}\left[N\right] - \psi\right) + \rho_0 \frac{S - N}{S} V_{g/1}\left[N\right]
\]

\[
V_{g/0}\left[N + 1\right]
\]

\[
= -C_0 + \rho_0 \frac{N + 1}{S} \left(V_{g/1}\left[N + 1\right] - \psi\right) + \rho_0 \frac{S - N - 1}{S} V_{g/1}\left[N + 1\right]
\]

Subtracting and re-arranging,

\[
V_{g/0}\left[N + 1\right] - V_{g/0}\left[N\right] < \rho_0 \left(V_{g/1}\left[N + 1\right] - V_{g/1}\left[N\right]\right) - \rho_0 \frac{1}{S} \psi
\]

That gives \(V_{g/0}\left[N + 1\right] - V_{g/0}\left[N\right] < V_{g/1}\left[N + 1\right] - V_{g/1}\left[N\right]\) or \(V_{g/1}\left[N\right] - V_{g/0}\left[N\right] < V_{g/1}\left[N + 1\right] - V_{g/0}\left[N + 1\right]\). The proof is complete. Q.E.D.